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JI
ABSTRACT

Contemporary analyses of transition flight of V/STOL aircraft are

based on aerodynamic data measured in a wind tunnel or on analytical pre-

diction using methods developed for conventional aircraft. The validity and

accuracy of these techniques for V/STOL aircraft has not yet been estab-

lished, and it is essential that they be correlated with flight test data through

parameter identification. In spite of the complicated nature of V/STOL dy-
narnics in transition, some methcd of identifying these characteristics is

required. This report documents the development of identification techniques

to meet this requirement.

The report first presents the selection of a mathematical model to

I •- represent a V/STOL aircraft (the X-22A). This is followed by a discussion

of available identification techniques. Based upon a thorough knowledge of

the requirements of this program and the limitations of the available tech-

niques, advanced techniques suitable for identification of V/STOL aircraft

stability and control parameters are cieveloped. These advanced techniques,

which were developed by CAL, are: a suboptimal fixed-point nonlinear data

smoothing technique for estimation of parameters and initial state of nonlinear

dynamic systems having a large number of parameters and unknown f ,"cing

inputs; a method for estimating the unknown forcing inputs to detect the

modeling errors; a start-up procedure for the fixed-point smoothing algor-

ithm; and an improved computational algorithm for the variances of the

fixed-point smoothed estimates. The developed techniques are then applied

to the identification of the X-22A stability and control parameters from

* computer-generated data, Princeton Dynamic Model Track data, and avail-

able X- 2 A flight data.
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LIST OF SYMBOLS

Nomenclature and symbols which have been used as consistently as

possible in the main body of this report are presented in this list. Less

commonly employed symbology have been excluded.

Axis Body axes are used throughtout, The axis system is orthogonal
System and positive according to the right-handnrule. The % -axis is

fixed in the plane of symmetry aligned with the fuselage reference.
is positive down and t is positive to the right. The origin is

at the center of gravity (c. g. )

Accel. Abbreviation for acceleration measurements (nl,•, Z , ad • ) d

Ae ro. Abbreviation for aerodynamic coefficients A

1 Collective propeller blade angle, deg. Positive " gives
increased thrust

Fixed-point smoother gain matrix at time t
Ot

C,Ce Cross-covariance matrix between process noise and measure-
ment noise

C P Cramer-Rao lower bound covariance matrix of estimation error

Ef I Expectation operator

E. 0. M. Abbreviat,,)n for equations-cf-motion estimator

4i(tp,ro) Vector valued function which represents the dynamics of the
aircraft

Conditional probability density function of Z given '

1-• NMnemonic which defines the type of Kalman filter and start-up
covariance matrix, • , employed for identification where:

If v - consta-.it (e. g. , 10), P for the init.ial parameter
estinmates is equal to the variances of these estimates
obtained from the E. 0. M. estimator each multiplied
equally by the constant y

If z = CR, P. for the initial parameter estimates was
formed from the diagonal elements of the Cramer-Rao
lower bound matrix

q is an integer signifying the number of corrections or
iterations employed in the locally iterated filter. If y is
not present, the filter is the extended Kalman filter
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F

9• Gravitational constant, 32. 2 ft/sec

Process noise effective matrix
g;(•,) Symbology to define nonlinear integration of the system differential

equations from time ti_! t& i. with initial condition '" -I

Gain matrix in unknown forcing function algorithm at time tj

h( ) Noriinear measurement or observation vector used to represent
the measurement system

dh/dv evaluated at the reference trajectory at tim- . , %here

x is the augmented state vector

I•,I ,I• Moments of inertia about z, y a, bocy axes, slug-feet

Ir, Denotes the n x n identity matrix

Scalar performance index or cost functional

-- •( ) Natural logarithm of ( )

Se5) , Control input vector

SM Pitching moment, ft-lb

Ma(,) Dimensional pitching moment stability and control derivatives
M.(u) expressed as a polynomial function of ta , e.g.Mow (a) - MCI+11,U 1 z 'A' OP&

Accelerometer measurement along the , axis, g's or ft/sec

5 Accelerometer measurement along the . axis, g's or ft/sec

N Number of data points minus one (the first at time t.

P Represents the unknown vector of the coefficients (or stability
and control derivatives) of the equations of motion to be identified

Covariance matrix of X , and defined by P=E-)JIZ-E(%)]"

P ,P(O) Covariance matrix of initial estimates

Error covariance matrix of the difference between the true state
and the state estimate at time t€ given data up to time t

Error covariance matrix oi the difference between the true state
and the state estimate at time tj given data up to time e

xv



P Fixed-point smoother error covariance matrix for the initial
state given data up to time t.

q Angu;ar pitch rate about the y body axis, rad/sec or deg/sec..
Since the vehicle is restricted to longitudinal motions only, ,=a0

Process noise covariance matrix

R,• 21 Measurement error or noise covariance matrix

t,'t Time, sec

7T Transformation matrix from perturbed to nonperturbed parameters

UW. Components of linear velocity along the j, . body axes, ft/sec

a ( a U )vector, 4 x 1, whose elements are powers of W,

4d (0 f 2" 3 u1 )T time derivative of Z vector

VI. Zero mean white Gaussian measurement noice vector sequence

V 42,Z Total velocity of c. g. , ft/sec or knots

For all

Zero mean 'ector of white Gaussian noise which denotes process
noise in continuous representation of aircraft dynamics

-r,• Zero mean white Gaussian vector sequence which denotes process
noise in discrete representation of aircraft dynamics

Smoothed estimate of the unknown forcing function at time t, given
data up to time iv

Body axis components of aerodynamic and thrust forces along the
"•. •.axis, lb

SUsed interchangeably to denote the aircraft state vector (q 9 u. ar)T
or the augmented state vector ('e u. a, ; ,r) T. The meaning is
clear from the context

, Initial state at time t6

Filtered state estimate at time t* given data up to time

4. Extrapolated or predicted state estimate at time tj given data
up to time

A• Fixed-point or fixed-interval smoothed estimate at time t£ given

data up to time .'
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One state smoothed estimate at time t.! given data up to time eIAI' 14 ~ Dimensional X force stability and control derivatives expressed

as a polynomial function of z. e. g.

tu)Nar) X Za~r + ar (. Ut%,r o% Z63

Denotes observation or measurement vector

I) Dimensional Z force stability and control derivatives expressed
as a polynomial function of a , e. g.,

IZ i. id "* U u

Angle of attack - ton'("')at c. g. deg or rad

Angle of attack vane measurement at forward boom, deg or rad,
•. tan•'o (w'9 23)

Flight path angle, deg

I2ower setting, inches

5a• Longitudinal stick position, inches, (positive S. gives po7,itivebl)

ses 5•'- 6
q. •ir Perturbations from defined references

8-ar

Sample time, sec

e Pitch angle defining attitude of the e body axis relative to the
horizontal, deg or rad

"Duct tilt angle - = 0 when duct axes are aligned with the

y, body axis, deg

Z CStandard deviation or square root of variance

Variance of Z , defined by E -E(x.i

6C R Standard deviation of estimates from the Cramer-Rao lower
bound matrix

xvii
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Standard deviation of the parameter estimates calculated in the
equations-of-motion initial estimator program

Transition matrix from tA_! to tf for linearized equations of
motion about a reference trajectory

Kalman or locally iterated filter gain matrix at time t

Commonly Used Subscripts

a• Denotes augmented state vector, i.e., includes aircraft states
and unknown parameters to be identified

i, 1R Denotes reference trajectory

I•0 May denote initial condition at time4 or trim value

t Denotes trim value

;-I Matrix inverse

A Estimate

T Matrix transposition

Some Mathematical Notations

Functional notation, i.e., x, is a function of the variables L and
a . Scalar or vector functions are clear from context.

( ) d( )/dt Derivative with respect to time
S)r Transpose of ( ) matrix

triM] Trace of matrix M

a I

where At() is an n-vector functional and x is a p-vector
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SECTION I

INTRODUCTION

The transition of a VTOL aircraft from hovering flight to conven-

tional flight and vice versa involves targe changes in the vehicle's aerodynam-

ic characteristics. Contemporary analyses fur transition flights are based

on aerodynamic data measured in a wind tunnel or on analytical prediction

using the same methods as for conventional aircraft. The validity and accu-

racy of these techniques for VTOL aircraft have not yet been estabiishLed.

Parameter identification can be used to determine the validity of these tech-

niques and at the same time yield an independent and more powerful method

of data analysis.

The realization that existing parameter identification techniques were

inadequate to handle the complex and unique problems of a VTOL, such as the

X-22A, served as a powerful motivation for this study. At the onset of the

study, no 1 -iown technique had been developed that could cope with the prob-

lems of significant nonlinearities, large numberf of parameters, imperfect

mathematical modeling, and noisy measurements, all of which characterize

the VTOL identification nroblern.

The identification of V/STOL aircraft characteristics in transition

flight is one of the most complex identification problems yet to be attacked.

First, this complexity arises from the fact that the equations of motion are,

in general, nonlinear and time varying over most of the transition range, in

contrast to the equations for a conventional aircraft, which are frequently

wll represented by linear, constant coefficient "small perturbation" approxi-

mations. Secondly, a more fundamental difficulty is the relative uncertainty

in formulating the V/STOL equations of motion due to the complex interaction

and icomplete definition of propulsive as.! -- rodynarnic forces and momnents.
A la ie numbt•r of parameters is usually required to describe these forces

and moments. For exarnple, in ;. previous study (Reference I), an identifica-

tion model was obtained using a Taylor series expansion about a reference

trajectory; unfo~tunately, even with a low order (third order) Taylor's

series expans.o., and with physical arguments to eliminate negiigible deriv-

a:-es, there. remain in the model more than 60 derivatives which vary as a



function of the thrust vector angle. Thus, we are faced with an identificRtion
problem of a nonlinear, time varying system having a large number of param-
eters. Finally, measurements of the dynamic motions of the vehicle are

usually corrupted with noise. Although this is a problern common to all types

of aircraft, it appears to be more acute for V/STOL aircraft. Based on

available flight records, the noise levels in the measurements of the V/STOL
aircraft motions are significantly higher than those of conventional aircraft.

The particular features of the V/STOL identiication problem may

therefore be summarized as:

1. nonlinear dynamic motions, represented by
Z. large numbers of parameters, containing

S3. significant modeling errors and whose

S4. measurements are contaminated with noise.

In spite of the complicated nature of this V/STOL parameter identifica-
tion problem, some practical identificat.,n techniques must be developed.
Clearly, the 1- -rameter identification technique for the V/STOL aircraft must

be capable of:

I. determining, to the best possible accuracy: the numerical

values of the unknown parameters, i.e., stability and con-

trol derivatives in the mathematical mode) chosen, and

2. detecting the dynamic modeling errors to improve the

mathematical modal which better represtntb the V/STOL

aircraft dynamics.

Although the se( xpability is occasionally overlooked, it becomes an

important part of the identification problem for V/STOL aircraft and will be

discussed at length later. For conventional aircraft, the form of the" tquations

is generally well known, and the first capability becomes of primary impor-

tance. Before the advent of th- digital computer, the usual method of obtain-

ing numerical values of th- parameters was through analog matching tech-

niques, a method which still finds use today. With the advent of digital com-
puters, the capability to handle large amounts of data in equations that might



need to be solved numerically became feasible. This capability led first to

so-called "equation error" techniques, such as the well known classical

least squares, or equaticns-of-rnotion method, and thcn to more advanced
"response-error" techniques, such as quasilinearization, Newton-Raphson.

conjugate gradient, and so on.

The merits or debits of all these techniuqes are a function of the

quality of their parameter estimates in the presence of various typos of

uncertainty, or noise. For the aircraft problem. as well as most others,

there are two types of noise that are of importance:

1. Measurement noise. The pa ameters of the mathematical

model are estim.nated in all cases by making use of measure-

ments of the state and/or accelerations of the system over

a time span. Since no measurement is perfect, these mea-

surements will have uncertainties, or noise, which will

affect the parameter estimates.

2. Process noise. Process noise may, in general, consist

of unknown random inputs to the system (e. g., gusts, fuel

d ange) and errors in the mathermatical model (e. g.,

neglecting a stability derivative in the model).

Essentially, equation-error techniques give biased estimates in the presence

of measurement noise, and pure response-error techniques give biased

estimates for nonlinear systems in the presence of process noise. Although

response-error techniques such as quasilinearization can be shown to exhibit

certain advantages over equation-error techniques, they do not have the

second capability of detecting errors in the assumed model, which is an im-

portant part of the V /STOL identification problem,

With the knowledge of the limitations given above, the present study

of V/STOL identification techniques was undertaken. Without going into the

mathematical details at this point, the adentification technique developed by

CAL essentially consists of a three-stage process:

3



1. Initial estimates of the parameters, and their variances,

in the assumed equations are obtained by a method that is

essentially an equation-error teL:inique. Since the

variances obtained by this method do not adeq lately rep-

resent estimation errors, an improved variance estimate

is obtained by z: Cramer-Rao lower bound compatation,

thereby facilitating a better initialization of the locally

iterated filter-smoother algorithm.

2. An extended Kalm~an filter, utilizing a "'local iteration"1

or "mdlti-correction" algorithm, is used to refine the

initial estimates of the parameters. Aithough the ex-

tended Ka. rnan filter gives biased estimates when applied

to a nonlinear problem, which is inherent to parameter

identification, it can be shown that the multi-correction

scheme reduces biases due to nonlinearities by improving

the reference trajectory between data points.

3. A fixed-point smoothing algorithm, which actually works

in conjunction with the multi;-corrector at each data point,

is used to further refine the parameter estimates and

separate out the effects of process noise. This step is

extremely important as a first attempt at determining

the mathematical modeling error, as well as improving

the parameter estimates. A~so, a more accurate variance

computation of the parameter estimate is obtained.

These techniques are fairly general and are, theoretically speaking,

applicable to the identification of unknown parameters, initial state, and

unknown forcing functions of a wide class of nonlinear dynamic systems. As

such, these techniques may have potential applicability to identification of

stability and control parameters of many flight vehicles other than VISTOL

aircraft, especially for these vehicles in large motion such as in spins and

post-stall gyrations. Howcve.r, as the number of unknown parameters

increascs, the computer time increases rapidly, and therefore the analysis

4
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of a large amount of data for systems with a large number of unknown param-

eters may not be economically feasible.

This report is organized as follows: Section II discusses the selection

of a mathematical model to represent the X-Z2A aircra't and formulates the

identification problem. A discussion of identification techniques is given in

Section III. Section IV discusses the identifiability of the parameters. The

development of final identification techniquet for the V/STOL aircraft and

numerical verification are presented in Sections V and VI, respectively.

Applicatio'ns of these advanced techniques to experimental data are given in

Section VII. Finally, the conclusions and recommendations are given in

Sections VIII and IX, respectively.

4
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SECTION II

MATIIEMATICAL MODEL AND FORMULATION OF THE PROBLEM

In this section, the formulation of the equations of motion used to

represent the X-22A dynamics will first be discussed. With the determination

of a mathermatical model of the X-22A aircraft and the definition of the data

which will be available, the problem of identifying the stability and control

parameters of the X-ZZA aircraft will then be formulated.

2. 1 Mathematical Model

The general description of a VTOL aircraft such as the X-22A poses

a fundamental difficulty. In general, VTOL aircraft exhibit highly i;onlinear

behavior, the result of c,. -nplex interactions of aerodynamic and propulsive

forces and moments during transition maneuvers. In particular, the dynamic

motions in the plane of symmetry exhibit pronounced nonlinearities during

transitions, and, as such, pose the most difficult modeling problem. It is

the purpose of the formulation to define a mathematical model of the plane-

of-symmetry dynamics that is simple enough to facilitate the determination

of its unknown parameters yet complex enough to include the paramount

features of the VTOL aircraft in transition. Specifically, the task is to

determine a representation of , , m in the following equations of motion,

written with respect to a body-fixed axis system:

where

'Y' X. = -
mass of the aircraft

-mass of the aircraft

pitching moment of inertiaT,

X Z =aerodynamic (including thrust) forces along body

axes, forward and downward respectively

M= aerodynamic pitching moment

6



The aerodynamic forces and moment (z , M, ,) in these equations

are functions of the flight variables and the control motions. For a VTOL

aircraft such as the X-22A, there are three independent control variables:

thrust inclination (A -), thrust magnitude (B3), and pitching mument mag-

nitude ( ). Excluding unsteady aerodynamics, then, we may write:

YY x(U, aq1,~ S, 5 a5 .0qa/* S;/7 I?

U/, tp49y Ss eas(2.2

As can be seen, there are four equations in seven (7) unknowns: a, a' , W

e, • ,, S-,; . Therefore, three "'riables must be specified to determine

the other four. For example, if an attainable reference trajectory• rl,

a(t,O(t) is specified, then q(), Zc(),B('),()may be determined. In

this example, &(0) ,ar4•) may be chosen to be uniformly accelerating ( or

decelerating) with b) = 0; for the X-Z2A however, X(l) is sornawhat con-

strained, and such a trajectory might not be achievable.

For the X-Z2A, it is reasonable to specify I (t) (usually as a ccnstant

rate of change of duct angle), X" () = 0() - X(1) and 0 (0 . In this case, a'"' ,I
q(t), 8(t) , Js(t) may then be determined for the reference trajectory. One

might then be tempted to expand equations (2. 2) in a Taylor series about this

determined trajectory, as was done in Reference 1. There, the specifications

were: Zr(tj = 0, a. -3 deg/sec and O(t) varying between 0° at I = 90* to the

value required for level flight at X' = 0%. Then the determined trajectory

may be written as ant the -force y

be expanded as:

j. ! (2.3)

where •"- -r x

a=•, ,,;,r •

7



Unfortunately, such a representation has several drawbacks. TLe.

first is that a large number of parameters is required for an adequate rep-

resentation of the Y force. For example, a third-order expansion (K=3)

results in more than 60 derivatives at epch duct incidence, .nd if a polynomial

fit of the A, variation is assumed, then more than 240 parameters would need

to be identified. The second, more fundamental, difficulty with this approach

is its strong local property. As we have seen, %o(4),a; (t. and 4o(1) for the
reference trajectory are determined by the specification of X(.&), 7 (t) and

0° (t). The choice of %,(e) indicates whether the reference is a takeoff

(accelerating) or landing (decelerating) trajectory. For the X-22A aircraft,

the value of F' () and a0 (O), for a given duct angle, are widely different for

accelerating or decelerating transitions. Since tWe stability derivatives

in (2. 3) are strong functions of both u, and F, , this in turn means that the

derivatives determined by expansion about a takeoff trajectory are invalid

for a decelerating trajectory. Hence, (2. 3) cannot apply to both. A some%,,at

more general formulation is required.

As the initial step toward this formulation, !et us draw an aialogy

with the "quasi-steady" representation ri the aerodynamics of a conventional

airplane. C;.,.sider equations (2. 2) ir equilibrium, level, steady flight. In
this case, T=-O , A -- W = = -- 0 , and we are left with three equations

(since q = 0) in •ive unknowns ( a, e= z , I , 5as , R ). Therefore, two

of the unknowns must be specified to determine the other three. A logical

choice is ýt and 4 , and thus:

: 8 k) (2.4)

Note that these equations are analogous to the equili'-riurn relationships for

a conventional airplane, where the controls and angle of attack are specified

as a function of the single variable a , but that the additional control ( I )
now makes .9=a, B (or power), and S. functions vf tvo variables. At a

This difference arises from the fact that an accelerated transition
requires a larger thrust (B) to accelerate, and. ,aince more of the weight
is then supported by thrust rather than lift, a smaller velocity and angle
of attack.

8



fixed duct angle, clearly, they are directly comparable.

Near equilibrium flight, then, the stability and control de.'ivatives

may be written as a function of the two variables a and 2, if the dependence

on the other variables is nearly Linear ( as it is for a conventional airplane).

Since this is not a perturbation about a pre-cribed trajectory, but is instead

a general quasi-steady representation of the aerodynamics, it should be

applicable to both accelerated and decelerated transitions near equilibrium.

Note, however, that equatior- (2. 5) are now nonlinear:

X.,(aI ) + ta 6Z ;-A 4

(2.5)

To determine the validity *f this model, time histories for a portion of

a takeoff transition from the full "global" digital computer program- were

compared with those from the model. The stability derivatives were assumed

to be represented by polynomials in a. and :

( ( L ;VA3, (2.6)

= a 4x4 constant matrix

& -

*A complete set of six-degree-of-freedom noniinear equations of motion
with available aerodynamic data of the X-Z2A wei. programmed on
CAL's IBM .6O/65 computer (see Reference I). These equations will
be called the "global" program henceforth.

[9
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The terms o , •.(s,2), and mn, (zz,X) in (Z.4) are computed by:

( 1)= 9 Sin 90(a,2) - [Y-4 ) (a, k)q tz(a, NZ)g. (a, Z) '. (4 ,-" a )

(u;) W O.AhS)/I2. - (,1 -1,(,I 3 (a.Z) " Isr)5 ( asZ).'S" 4i,)& 5 .)l (2.7)

M0 4,2w) = Z) [r ; ,(4t, 2) 4 ?n, ~3, (a,2)B,(, Z) -t ?;lJ,f (a .J az)]

He re, 4 (a, Z) Z, ('a, 2,) ,,,o(a, 1) are the trim (equilibrium) values of
vertical velocity, collective pitch, and longitudinal stick position. These trim
values, and the derivatives Z,('4,2,) , etc. were obtained from the digital
computer program with global aerodynamics, with the polynomial represen-
tation being achieved by a least-squares fit. The particular transition chosen
was A, =-3 deg/sec from . = 30' to 3, = 15%, a 0.4 inch longitudinal stick
step, and a ramp collective input. These responses of the model matched
tiose of the global cocnputer program quite well, thereby indicating the

validity of the model (2.5).

Unfortunately, when duct angle is changing, the number of param-
eters i•-, this model is still much too high for efficient identification. Also,

although the model was shown to be valid for a transition of moderate accel- I
eration, it probably wouldn't be valid for transitions far off the equilibrium
condition. This model, then, is best suited to provide an accurate represen-
tation of the X-'2A dynamics at fixed duct incidence, which reduces the
number of parameters to be identified by a factor of four. With Z, fixed,
equations (2. 5) become:

4r- IZ S ea 'M, ('~ (2.8)

Equations (2. 8) were verified by comparing time histories as previously
described. At I = 30°, the model time histories were an excellent mitch
to those of the global program when the stability derivatives were represen-
ted by second- and third-order polynomials in a , and the matches were only
slightly degraded by using only first-order polynomials. This mathematical

10
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model, then, may be used for identificaticn of fi.ed-duct data.

As w,- have seen, both a pure perturbation about an accelerated ref-

erence trajectory (Equation 2. 3) and a quasi-steady representation around

equilibrium (Equations 2. 5) do not yield equations that are tractable for

identification. We have, however, obtained a model that is valid and useful

at fixed duct incidence (Equations 2.8), and our purpose now is to obtain a

similar model, by a combination of perturbation expansion and quasi-steady

representation, that will be valid for transitions.

Consider an ideal level transition with zero pitch attitude. This is

feasible from a duct angle above 15 degrees; and, in fact, this technique

was used in m:any occasions during Phase I of the Military Preliminary

Evaluation of the X-22A (Reference 2). Upon constraining the transition to
be at constant flight path angle (zero in this case), and zero pitch attitude,

and choosing a given I,(LO, it can readily be shown that a unique a -Z profile

ex:ists from Equations (2. 2) and (2.4). We may therefore choose the following

references for slow and fast transitions: e = 0, " constant and

S 0 (equilibrium - slow conversion and reconversion)

- 5 deg/sec - fast conversion

= 5 deg/sec - fast reconversion

Figure 2-1 shows the a-, profile for the slow transition with " = 0.

The solid line represents the profile obtained from the digital program with

global aerodynamics and the "circles" are taken from Reference 3. The

profiles for fast conversion and fast reconversion can be obtained from the

digital program or from the flight records in Reference 2.

We may now expand Equations (2. 5) about the chosen reference tra-

jectory. Note that the unique tA-X profile means that the coefficients are now

functions of only a. or Il ; we choose to make them functions uf W so that,

at fixed duct incidence, they will reduce to Equations (2.8). Retaining only

first-order terms in the state and control variables (with the exception of )

Equations (2. 5) therefore become (after substitution into Z. 1):

II
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U~'Wqi6-o()zo ,6)AUr ,za,(a.).4 94ZO()4, +t ,XA I

ea .qcsO (4c sBj:4if (q) 4 (2.9)

4 2n0 4Qn(i)I?7 U)Af * M ( -,)A #n()?fs)&W~ +);L04A

(Note: Here the subscript R denotes the reference trajectory

and A•fr= ar-Iaz (a), etc.)

The following comments concerning thpse equations are in order:

1. Although we have been forced to return to an expansion

about a reference trajectory as in Equations (2. 3), the

resulting Equations (2. 9) result in fewer parameters

to be identified.

2. Equations (2.9) reduce to (2.8) when b A, = 0 (fixed

duct incidence).

3. Equations (2. 9) also have fe, er parameters to

identify than do Equations (2. 5), and are applicable

to both slow and fast transitions.

4. Equations (2. 9) reduce to linear equations with time-

varying coefficients if only first-order perturbations

in a are retained (see Appendix A).

5. The fact that the reference transition may not be at

constant pitch attitude throughout (q, i o) is accounted

for by .

Equations (Z. 9) then, were adopted as the mathematical model of the

X-22A dynamic motions in transition, and Equations (2.8) were adopted at

fixed duct incidence. These equations are now used to formulate the param-

eter identification problem.

12
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2.2 Formulation of the Problem

The uncoupled longitudinal equations of motion for the X-22A in tran-

sition flight as described by Equation (2. 9) are now used as the mathematical

model for the X-22A aircraft for the development of the identification tech-

niques. Recall that the derivatives in Equation (2. 9) are expressed as third

degree polynomials in forward speed a, i.e.,

ro0 (u) '• a, sT -

wn (U) 2• C.10)

I •~~~~mu " t 2

ORa 16

where £(.1

Def ine tC.> parameter vector .9to be

and the state % and the control vector 7n to be

t( , U U (2. 13)

(AX 15 A .
7 (2. 14)

respectively. In view of the fact that the model (2. 9) is by no means perfect,

dynamic modeling errors and possible unknown external iccitations are sim-

ulated by unknown forcing inputs, ara) The equatiois of motion (2.9) may

now be alternatively written as:
(0o) (2. 1)

where P. is the unknown initial condition, =,
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mo (a) I a--u) + '-n mkt (" d ,,. -,(uC. . . • ),a . ( U)..q o
%6e YX );Ast- qur-sing

and ijka) o , , (2.17)

Consideration has also been given to the simulation of random gusts.*

Denote, for convenience, the acceleration vector to be

a COS I (Z. 18)

* If gusts are considered, q, is the gust effectiveness matrix and

st'-W is a gust vector, i. e.,

~ ?1~j) 0 rn(a
0 0 0 0Lq ,pn)I , u x(s I s(t)r :

where [ I

a " ad '.+,ý,.ae+Aa , ZS, "•a

1 ,, U r 4 1t 4 .a is / 1]
i = (C, I, 2u, 3.us

2 . u/
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W may now formulate the problem of identifying V/STOL aircraft param-

eters, the unknown initial state, and the unknown forcing inputs as follows:

Given: (a) the nonlinear dynamic system (Z. 15)

(b) a set of discrete measurements for the state and the

accelerations, which are corrupted with measurement

noise V (tA) , and zv (1j), respectively,

•!l~•) - •"(f• • • (ti "•(2. 19a)*

Z,('- h -ti,•( )) t (2. 19b)

(c) a set of discrete measurements for the control vector

7 ), "1= ,2 ... ,t.

Find: the unbiased, minimum variance (efficient) estimates for Y, , ,

and I-(1i) , 1 1, 2, Al

A few comments concerning the above formulation are now in order:

(1) By annexing the parameter vector p to the state vector z , i.e.,

* For carrent instrumentation on the X-2ZA, there is no ar senaor.
Consequently, measurements from the c vane sensor are utilized.
In this case, the measurements are nonlinear functions of the states:

tan . + noise, where x is the X vane measurement.

The vane is located at .J ft ahead of c. g. of the aircraft.

15



it is readily seen that Equations (2. 15) and (2. 19) can be rewritten as

•,• • +-__ ,y (0) :%(2. 2a)

"F ),_ + [0 ] (I.J2b)

where

LO(u) mn&0,,,•lns& ,,,) , ),5+ m ,,, (4 -,(nAaX.

0 0 0

From Equation (2. 21) we see that the problem stated above can now

be restated as follows: Giver. (a), (b), and (c), find the best

(efficient) estimates of -Xt and ur(t) i= !, 2, ... ,,r'.

(2) Regardless of the statistical properties (or more precisely, the

cond; ional probability density function)

and 4'ar- y(N)) , 2 , f2. V (2. 22b)

a best (efficient) estimate for the above problem is the conditional

expectation of (2. 22a) and (2. 22b), i. e.,

,:v (2. 23a)

This is shown in Appendix G.

16



(3) If the statistical properties of Yl , ar(t), and

V(6) [z('t,) r lyzj t/4 [9, up,) are known, and if they are

riormally distributed such that

,'0 * C 0

and ar(t) and zrv'N) are zero mean with covariance matrices

E Iii(t) -T'))}

E t(t) V (T (} '•)S(t-r)

respectively, then it has been shown (References 4 - 7) that the

xaxirnurn likelihood (Bayesian) fixed-interval smoothed estimate

of y, (t) for Ot-& t.v given the data q0) , Ot tI is

equivalent to minimizing the cost functional

-0? f-,,; ,T = III/ )C - ., 11 1• -4 F • a.z
SZ 0 PS"f

0 0

with respect to ar(t), 0 t £ tv subject to the constraint in

Xquation (Z. Za), where

L '1 ~(2. 2 a

S0 - . (Z. 2b)

and 1,Y1 ''A%.
It should be emphasized that unless (2. 21) is linear, the fixed-point

17



A
ir smoothed estimate t,,, as stated in comment 2 does not

necessarily lie on the fixed-interval estimate as formulated above

at time t = 0. This has been pointed out by Cox in Reference 5.

(4) As will be discussed later in Section V, the a priori information
P1o for the unknown parameter is aimost always lacking. If

in addition to the lack of the a priori information P , the process
noise is also absent, then,for the discrete measurements con-

taminated with Gaussian noise where

E e o

the likelihood function becomes

N 2L.. ; (r.-.')[ 1•) -C- •c li. ; , .- (2.26)

where C is some positive constant independent of z,2 .
0

Thus, the classical (non-Bayesian) maximum likelihood estimate

for Y,,, has the same cost functional as what is commonly called

a measurement (or output) error method. The latter will be

discussed in the next section.

t
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SECTION III

REVIEW OF IDENTIFICATION TECHNIQUES

Parameter identification has been playing one of the major roles in

the field of physical science and engineering. Literally hundreds of papers

and reports have been devoted to this subject. Since the V/STOL parameter

identification problem, as formulated in the preceding section, is basically

a nonlinear estimation problem, attention was therefore focused on those

methods which are directly applicable to nonlinear systems or which can

readily be extended to nonlinear systems.

Perhaps due to poor communication among the various authors, much

N ork has been duplicated and triplicated; each author often has coined a

different name for basically the same technique. For an uninitiated engineer

it would be a big job indeed to sort out which technique is the most suitable

for his problem. The first important point, then, is to recognize that the

many available parameter identification techniques may be classified into

three major groups, as follows:

1. Equation-error methods (or process- ror methods),

2. Measurement-error methods (or response-error methods),

and

3. Methods treating both measurement and process errors.

As shoNn later in the report, equation-error techniques give biased

estimates in the presence of measurement noise, but they are noniterative

and hence the simplest for parameter identification from a computational

point of vie%. Furthermore, this group of methods is equally applicable to

both linear and nonlinear systems. The response-error methods are iterative.

Although these methods givr unbiased estimates in the absence of process

noise, they generally produce biased estimates of the unknown parameters in

the presence of process noise. Again, these methods are equally applicable to

linear and nonlinear systems. The third group, which treats both the

meas.trerc,' nt and process errers, has the capability of obtaining unbiased

estimates in the presence of process noise and of estimating the unknown

20



forcing inputs (or the process errors), thus providing an indication of the

errors in the dynamic model assumed.

Although the methods in the third group are undoubtedly the most

suitable for use in parameter identification of V/STOL aircraft because of

the capability of detecting the modeling errors, it is felt appropriate at this

point to examine, in some depth, the basic characteristics of all the three

groups as stated above. In was with a clear understanding of the merits and

debits of these available techniques that a iinal technique for the parameter

identification of V/STOL aircraft was develnped as discussed in Section V.

3.1 Equation-Error Methods

The equation-error methods for aircraft parameter identification may

be conveniently classified into two categories:

(a) Methods which use the acceleration measurements in

addition to the state variable measurements.

(b) Methods which use only the state variable measurements.

Under category (a), only the so-called "equations-of-motion (error) method"

(References 8, 9, and 10) was considered here. Under category (b), three

methods were studied. They are:

(i) Modified spiine function method (Reference 11).

(ii) Polynomial estinadtor.

(iii) Denery's method (Reference 12).

There are many more methods of the integral transform variety available in

this category; however, since frequency domain techniques are, generally

speaking, not readily extended to nonlinear systems, the integral transform

methods were not considered in this report. Some statistical properties of

the equation error methods are discussed in Appendix B.
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Equations-of-Motion (Error) Method (References 8-10)

This method was originally developed in CAL's Flight Research

Department for conventional airplane identification. It is essentially a

classical linear regression method and a general discussion of the method

is given below as applied to VTOL aircraft identification.

From Equation (2. 15) and (2. 191, i.e.,

S= ( 2 . . 5 )

x -t W •(2. 19a)

h,('i)"V (2. 19b)

where Y = the state vector for our problem, (4-vector)

1.= the unknown parameter vector (q-vectort

= state measurements (4-vector)

= measurement of the accelerations (3-vector)

S= c o n t r o l v e c t o r ( r - v e c t o r )

-Vz = error vectors

It is desired to estimate the parameter vector . that is the best fit to Equation

(2. 15), in the least squares sense, using a set of data

Since .p enters into the vector-valued function f linearly, the

substitution of the above set of data (3. 1) into (2. 15) results in a set of

3 ( N + 1 ) linear equations

72C(A)"A,,.far (IV) (3.2)

,,here AN is a 3 (NA + I ) x constant matrix consisting of data Z,(N) and M(/V)

and a/-(V) A [ar, (t), arz 0. ), Ao'•), ..
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Let us assume that AN is non-stochastic. Actually, AM is obviousiy stochastic

because Z,&N) is a random vector for e. f 0. Therefore, our assumption here

is only an approximation. t'or details see Appendix B. Let us further assume

that Ej'N?] = 0

coy far (y = 6. 1(V+1

Then the problem posed above becomes a simple classical linear regression

problem with non-stochastic regressor ( Am. ). The least square solution to

(3.2) is . -1(A Ajy)_AZ N
(3.3)

and the covariance of is

€ov =. '(AN ANY' (3. 3a)

Since 6z in the above equation is usually not known in practice, it has to be

first estimated in order to obtain a covariance of the estimated parameter

using (3. 3a). To do this, let us consider the error vector of the fit.
"2 NO

A

where Z. (N) AN, (). Thus,

6A,6

Using Equation (3. 3), it is readily shown that the above equation becomes

= M:A(N)

r -where .. 1 =I-ANOA,,)- A, . It is easy to show that 'V i and M1 14 and

hence the error sum of squares becomes

C T au(wvrMtMar(Y) .. r(/) Ala,("N) (3. 3b)

Thus, since /M is non-stochastic by the virtue of th . assumption that A,4 is

non-stochastic and since the trace operator is a linear operator, it can

readily be shown that
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= E z tr"

We may therefore approximate 6Z by

3 (•v-O-•(3. 3c)

and thus, using (3. 3a) and (3. 3c), an approximate! estimate of the covariance

"of the estimated parameters can be vwritten as

cv.)-(A-) (3.3d)

It should be emphasized that the ,4bove relation is based on the assumption

that A. is non-stochastic. Some problems associated with this basic assumption

are discussed in Section V.

Using (3. 3), both the linear and nonlinear representations of the

VTOL aircraft dynamics in transition vert prugramn-ied for digital computati•n-

As an example, consider the nonlinear representation for the pitching moment

equation in Equation (2. 8)

•, () =,, O7 (U) -•(.,,IU,),q + in I + g-, ( ). + 4,s(,,A{3
'ý ES (3.4)

,ýhere no (1u) etc. are third-order polynomials in a. and har=-g()-4rs(e , and

-- here the subscript R denotes the ref,-rence values.

Using (3.3), (3.4) becomes

S. A* (3. 5)

The linear representation is obtained by setting ; (0 constant and 0
in Appendix A.
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v here

Pq = (A,,A4 (

--b(a at a,. (ao• a,, , a ,2 a,.,
(a. 60 a427a 6,,,,a,,a.-,,,a. )a

21 a

-stz)•%•• -"-r/.,• '-
n•,(u) - rt 4_ - (4i~o), q (t,), .-- , 41.t••~

Xn 6

and

L~ £~t, ZTo~) tL3(',,) aw.(,).-.- au,'•)tt) - -- ,AX(to) a•Xgt 0 ) - - •X•s3 (tVK ) ut,•(t,) st't,) Aw't,>.---w•,,(•)--(t,) Xt 1 ) A•sut,)-- - - AXL (t

td' U (t A LI I

f~ Y) '1 t ' " (,t,.)J - -AL ,/1,z ) - - J •"

AModified Spline Function Method

A spline (see Reference 11) is a thin strip that is bent so as to pass

through a given set of data points. Using the deformed strip as a guide, a

• I

.+ line can be traced through these points; the resulting curve is continuous

'• and has a continuous first derivative. Analytically, a spline function is

usually generated by minimizing the integral of the curvature of the entire
function subject to the constraint that the function passes through all the

data points. Ir this construction scheme it is further assumed that the
functions and th(;r first e o derivatives are continuous sithin the set of

t a data points.

In many practical situations, the data are contaminated o ith i ome

random errors (such as quantization errors or measurement noise). Con-

sfquently, it becomes destrable to relax the constraint that the conventional
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spline function must pasb through the data poin.s. The resulting function is

called a modified spline function (also called floppy spline function). A scheme

to generate a mcdified spline function has been developed by D. Larson and

J . F lck of CAL, and has been reported in detail in Reference 11. They also

developed a computer program for generating the modified spline function

using the technique they developed.

When this computer program is used to perform as an initial esti-

mator for parameter identification, the measured state variable data and

%eights are read in. The spline routine uses these data to fit a floppy spline

curve through the measured data points of each state variable, and tMen

evaluates the resulting curve and its time deriative at each of the desired

time points. Once all of the derivatives of the state variables are known,

the initialization routine uses the least squares technique to obtain the initial

estimates of the parameters.

Polvrn'rniai Estimator

This method also uses only the measurements of the state variables.

First, the state variables are fitted vxith a polynomial in t using a least

square method. The time rates of the changes of the state variables are then

calculated from the polynomials used to fit the state variables. The equations-

of-motion error method is then applied to obtain the estimates of the unknown

parameters.

Like the preceding t',-o methods, here %e also assume that all the

state variables i.re measurable. For computational simplicity, all the state

variabies are represented by polynomials of the same degree. Consider the

linear representation of the VTOL aircraft dynamics.

Fz
(3.6)
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We fit a set of n-degree polynomials to these state variables' measurements.

Let=A (3.7)

where ( a,, . ,
a,, a as,

At each time instance t.

Hence
LrI Y(o •(t,, ... I(•) = b(tod, b(t,)',...,b XJ•]

or 5 AX

Thus, in a least square sense, A is given by

A 1(3.8)

where F q¢to) o('.) ]1. 8(to) •(tN) I
ul.(to) -•)

L v~(t0

0 iA: NJ

We no- substitute (3.7) into (3.6); the result is:

r nj

Once again, using the least squares method, xe have

F -'6 A.Yd [,.A X Mr ---~ [(Avr)MT] }L (3.9)
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Equation (3. 9) is the desired result. It is to be noted that like the

preceding to methods this approach is also applicable to nonlinear systems.

Denery's Initial Estimator (Reference 12)

This method of performing the initial estimation of the unknown

parameters .%as recently developed by D. Denery. Its special feature is its

similarity to the method of quasiiinearization, whic. we shall discuss later.

Thus, a unifiec, estimation procedure can be used for first obtaining the

initial estimates and then subsequently improving these estimates through

further iterations. Hoever, this method is applicable only to linear systems.

The basic idea of this method is to relate the unkn.:,;n parameters

of the system to a set of ne% parameters that affect the output in a linear

fashion. In so doing, linear regression can then be used to obtain this set

of ne%% parameters which, in t,.,rn, permit the ci -uiation of the origi,:al

unkno%% n parameters using the relationship betA een these two sets of param-

eters. Details art discassed in ApFendix C.

3. 1. i Comparison of the Numerical Results

The equations-error methods discussed in 3. 1 were programmed

for digital computation using the linearized equations of motion of the VTOL

aircraft dynamics, vhich describe the fixed-operating point, fixed-duct angle

motiur.s of tiOw %ehicle (see Appendix D, Equation D.2a). The results of the

com1puter runs are shonri in Tables 3-1 through 3--+. The data used are
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explained in Appendix. D. From these numerical experiments, the following

observations may be made:

H

(i) For data without measurement error (Data 1-0), the

equations-of-motion method and Denery's method give the

correct parameter estimates. However, the polynomidi

estimator and the modified spline function method do not

obtain the correct estimates.

(ii) As the noise to signal ratio increases, the estimates of all

four methods deteriorate, confirming the statistical

analysis conducted in Appendix B.

(iii) Although for noiseless data, Denery's method gives the

correct estimates regardless of nominal values of the

parameters , and &N that have been assumed (see

AppendLx C), for noisy data the estimates are significantly

affected by the values of Fv and 6, used.

(iv) The estimates using the polynomial estimator depend

heavily upon the degree of polynomial assumed for the state

variables. The numerica) results suggest that the higher

degree polynomial fit (ninth degree) is more accurate than

the lower degrev (fifth degree). Ho\%ever, the estimates

for the ninth degree fit do not appear to be better than

those using the modified spline function method.

(v) From the computational point of viev, the equations-of-

motion method is the simplest, provided that the accelerationr

measurements are available; Denery's method is the most

complicated one, in that it requires solutions of a large

number of sensitivity equations.

3.1.2 Concluding Remarks on the Equation-Error Methods

From the above discussions and the numerical experimentations

the followirg rerm~arks are in order.



?r

(1) It has been shown (Appendix B) that the initial estimato's

discussed in Section 3. 1 are asymptotically biased, i. e., the

use of longer data records does not help reluce the bias of

the estimates.

(2) A formula has been derived, for the linear case, for the

calculation of the bias when the equations-of-motion method

is used to obtain the initial estimates and if the noise is

normally distributed. (See Appendix B).

(3) If the acceleration measurements are available, then the

equations-of-motion method i. recommended for initial

parameter estimation, since this method is applicable to

both linear and nonlinear systems, and since its compuca-

tional procedure is the simplest. If the acceleration

measurements are not available, then the modified spline

function method is recommended.

(4) For linear systems, Denery's method is a good alternate

to the above two methods, since its computational algorithm

is similar to the method of quasilinearization, and a single

computer program can therefore be easily devised.

As stated at the beginning of Section III, in the absence of process

noise the measurement-error methods %%ill remove the bias in these initial

estimates obtained using equation-error methods. The iterative measurement-

error methods such as quasilinearization method, the extended Kalman

fiitering metho-d, and the conjugate gradient technique are applicable to both

linear and nonlinear systems. For linear systems there appear to be other

methods that are capable of removing the bias of the initial estimates. From

the statistical analysss performed in Appendix B, it is clear that these

methods may be classfied into the following two groups:

(a) Estimate the noise statistics and remove the effects of

the noise from the regressor (Reference 13).
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(b) Introduce a set of "instrumental variables" (see References

13, 14, and 15) which make the resuiting regressor

uncorrelated with the errors in the least square fit. (See

discussion in Appendix B.)

3.2 Measurement-Error Methods

We now proceed to examine the basic characteristics of the second

group - the measurement-error methods. As we stated in the comment at

the end of Section II, this group of methods essentially employs the likelihood

function for the system (including additive vwhite Gaussian measurement noise)

as the performance index. Indeed, from (2. 26) it is clear that maximizing

the likelihood function • .C (Y'N)/,) is equivalent to minimizing the deterministic

cost function

Therefgre, from the statistical point of view, the estimate of the initial

augmenttd state (Y-1 r .f-, r)7 obtained from minimizing (3. 10) is the

classical (non-Bayesian) maximum likelihood estimate for the initial

augmented state of a continuous system with discrete measurements corrupted

by additive, white, Gaussian noise. From a deterministic point of view, the

minimum of the cost function used in this group of methods is the sum of the

weighted least squares in the output errors.

For analytical simplicity, we shall consider (3.11), vhich is: the

equivalent continuous counterpart of (3. 10), for use as the performance

index.

0

Th,. problem for this group of methods can now be sLated as follows:
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Given: (1) a continuous noidinear dynamic system (2, 15) witb

WOr) = 0 , and a set of continuous measurements

(t), 0 tý6 as given in (3.12a) and (3.12b)

, x0(3. 12a)

9() zp n) + 1•/) (3. 1 b)

respectively, where E ftro() 0 0, and

(2) a set of noise free continuous measurements for the control

vector 7(e), 0 ft ý.

e ind: An estimate of the parameter vector and the initial state

that minimizes (3.11)

For sake of generality in the following discussion, let x be an n-vector,

be a q-vector, and 9 an in-vector.

3.2. 1 Description of Various Measurement-Error Methods

Clearly, the problem posed above essentially a nonlinear

parameter minimization problem, for %hich many iterative methods are

available to obtain a solution. In this report, the following methods are

discussed.

1. Quasiiinearization (Differential correction, parameter

influence .oefficient, Gauss-Newton procedure,

"Modified" Newton-Raphson).

2. Gradient methods and their simplified computation.

3. Basic Newton's procedure and Goodwin's simplifications.

4. Conjugate gradient method.

Discussions %%itl be given later on the effect of the process noise on the
estimates from this group of methods.
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5. Method of invariant imbedding (for case without process

noise)

6. Extended Kalman filter (for case without process noise)

A sketch of these methods will first be given. This will then be followed by

an examination of the basic characteristics of this group of methods. Their

merits and debits will then be assessed, based on the computatlonal com-

plexity as well as from the results of numerical experiments using computer-

generated data.

Quasilinearization Method (References 16 - 18)

This method is also referred to as Gauss-Newton proczdure (Refer-

ence 19), parameter-influence-coefficient method (Reference "t9), "modified"

Newton-Raphson method (Reference 20), etc, It begins with the linearizations

of the trajectory and the output about the initial estimates P and '€a :

S--4)a i [(3.13)

P / "P /,J 4. - ,

ý2 (3. .!4)

The sensitivity matrices 19/X and t/9 are obtained from the solu-

tions to the following set of linear ti-ne-varying differential equations:

, 1(9 ) (,297r /9 d ?:r (3.15)

033

/p .174 (3. 16)
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where 1 is the nth order identity matrix. From (3. 11) the gradient of the

performance index with respect to the initial state and the parameter is

RZ VZ (3 17)
L -- 

a

Using (3. 14) and equating the gradient V1% in (3. 17) to zero which defines

the extremal, yields a new estimate

A°

ap j

The J ne (3. 18)

where r

r T

oth s9Xd sA Oh 09 td r•a=! 0 in (3.17) ind

93X (3. 19)

(3. n the come outpution Y or are estimate oldresimate

'*a,),I . Nte lsothatX. n (. 13 isthesolution

of(312)uigY

It should be pointed out that, when acceleration measurements are

not used, h is not a function of jo and, hence'9ý9 = 0 in (3. 17) and

In the above derivation for the improved estin-Ate, there is no

guarantee that (3. 18) will converge. It has been a common practice to use

a positive ntmber x , 0 < X_ 1 to reduce the magnitude of the correction

whenever any element of 62 is large in magnitude compared to its cor-

responding .kao) An alternate szheme is to determine ot by a one-

dimensional search such that
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rather than using a predetermined value such as 0 < T 4 1.

We mention in passing that (3. 19) can oe used as the basis for a

recursive computational scheme (Reference 21).

Gradient Method (References 22 and 23)

The gradient method is basically a linearization on the performance

index with respect to the parameter vector, that is:

:% A Z% ) = 4 / ) - ,z% (3.22)
0~

with a constraint on the step size 6Y 0 given by:

€0
S- (Aga,)" I ('Y't' (3.23)

where C is a chosen constant, and S is a positive definite syrnrretrical

matrix.

Introducing a Lagrange multipeie. ?., and setting the gradient of

YJ'oa) 0 0, where

-a J(A Z S Jz)

yields

= ,°A IZ. -- 0  L Id (3.2 4)

where the gradient Vy J in (3. Z4) is given by (3. 17).

The evaluation of the gradient of the performance ind,-. can be ob-

tained more efficiently by a use of an adjoint-variable method. However, we

shall riot discuss it here. (See Reference 22 for details.)
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Newton's Procedure and Its Connection with Quasilinearization
(References 19 and 20)

The basic Newton's procedure is to first expand the performance
A

index (3.11) in a Taylor series aboAt the old estimate %a

where ted Ao is the curvature matrix, and higher-order terms have been

neglected. By imposing the condition that the gradient of the performance

index with respect to the parameters and initial state be zero, i.e.,

the change in the parameter vector is seen to be

S- , . v,,(3.Z6)

The new estimates of the initial state and the parameters are then obtained

by using (3.27)

where C > 0 can be obtained by a one-dimerisional search along the positive

real axis such that rin. Notice that a Iarge amount of com-

putation involving second partials with respect to initial state and the parani-

eters is required to obtain the curvature matrix I. V . Goodwin

(Reference 19) has simplified considerably the computational load by again

using adjoint variables. However, aside from the fact that the computational

load is heavy to obtain the curvature matrix, the other major drawback

associated with Newton's procedu: e is the fact that unless the curvature

matrix 4 2 is positive definite, there is no assurance of convergence.

"This can be seen by substituting (3. 26) into (3. Z5), which yields:

J.)~ (" I I" (3.28)
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ineis positive definite if and only if J'", •A is positive definite,Sinice T,•,•
it is clear that there is ro guarantee that X will decrease. Several schemes

have been devised to partially overcome this difficulty. All these schemes

involve the diagonalization of the curvature matrix and hence require a solu-

tion of eigenvalues and corresponding eigenvectors of the curvature matrix -

a procedure whi--h significantly increases the computational load. We now

show the connection of Newton's procedure with the quasilinearization meihod

discussed previously.

From (3. 17)

9h* 91 I? l fd h 0V ftN112

?• o • a,o%,, t (ýh-sv a t.4v a%,,, ) a,

J "T

a% ap all dt
where

, ,, * xfa %

and

are matrices with their ij and im elements as shown in the above brackets

respectively.

Now, if the second partials are neglected, then
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q

IT +

p~fs-ahX T -; - it A ?,

O (3. 30)

Clearly, from (3. Z6), (3,30), and (3. 17)

r . r" FO •at' ~ .. • t
ahEa afA h9, e k Ih 4-9 '

- L-
"& Liz atr 'i~ 3x. dp • :(~••t, , )

which is precisely (3. 19). Thus, if the second partials are neglected,

Newton's procedure reduces to the quasilinearization method discussed

earlier.

Conjugate Gradient Method (References 24 - 26)

The conjugate gradient method begins with the constructIon of (0o.-

jugate gradient vectors {aj which havre the fý>liowing property

r r
.- , 'j, a,= 0,2, . ., ,' (3-31)

This is then followed by a sequence of one-dimensional searches to obtain

scalars (atzI sii:: that

m- an (3.32)
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and

(3. 33)
£ ,

In practice, the construction of conjugate gradients by (3. 31) is

rarely used, since it requires the information of the curvature m.atrix

"h.stead the following construction scheme is used:

4i 119. 16ZA Oipz i1(3.34

_v a( V j(a- '11) j

where the norm iJ . J) is the q 1- ?f -dimensional Euclidean norm (i.e., the

square root of the sum of the square of the r"' -components) and the gra-

dient V,• i ') in (3. 13) is given by 13. 17).
U 40

Thus, the first iteration is basically a gradient method. However,

* the search direction. iW the second iteration and iterations thereafter use

a linear combination of the gradient and the I-revious search direction. In

addition to the simplicity of the algorithm, it has a good convergence pro-

perty. Indeed,

d ~~ j (04 ~,T(;) 0~
( iz -.0

and hence

To show this, one obierves that

%- 39 0 -

From (3. 32) it is then s,!en that
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a a,d:

rr

and from (3. 3 3)

,where

6i -_ I•..J• )IIr

Hc nce,

11~ W • .F j/ 'T 0 .

Using the definition of go , it is readily establi-cied that J ' J(;" )

The preceding four methods are all nonrccursive (or batch pro-

Scessing) methods; the entire data set is utilized each time the estimates

are updated. As a summary, we list the information utilized in each meth-

od to obtain the correction term 6%,- which improves initial state and

parameter estir-ates in the following table:

I Methods Information used in correction, Af-

i Quasilinearization Gradient and a modif ed curvature matrix

Gradient Method 1 Gradient only

Ncvwton Procedur,? Gradient and curvature matrix

Conjugate Gradient Conjugate gradients
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tW.. ..... ,1-wo- ov r-:ursive n1ethods that sequentially update the

estimate of the parameter and the current state at ea-Lh data poin!.. hs

two methods, as do many more nonlinear filtering methods, belong t-, the

third group oi identification methods, in that they may tre,'t both mttasure-
ment and process noise. Clearly. these metliods are equaily applicable for

parameter and state estimation in the absence o"' nrocess noise, and have

been chosen here to demonstrate the recursive nz -e of the computation.

We have more to say later in Section 3. 3 and Section V about the estimation

of parameters Pnd state in noisy nonlinear dynamic sy-tems based on noisy

nonlinear measurements.

Invariant Imbedding Method (References 27 and 28)

Rewi te (3. 12a) and (3. 12b) in an augmented state form, (2.21a) and

(2.2i1b) resrectively, i.e.,

;~Y- (3. 35a).ra+

=h m)(3.35b)

Then the Jacobian matrices / ;za j are

= a•- (3. 36a); a~a L-0 ,0 $

~ -1 (3. 36b)

Using the invariant imbedding technique, it can be shown (References 27 and

28) that the estimate of the augmented state is computed recursively as

follows:

d Ad W t- F./t)+ ,-hfmt (3. 37a)

= k (i) hI ( M)) P (3. 37b)
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U

where the term

in (3. 37b) is an (p'.t) (nq) square matrix whose ith column is

Thus, (3. 37b) can be rewritten as

.)T
fr' (q h"

In (3. 33), the square bracket is an £nq) x (n#q) matrix whose e. j element

is contained in the bracl et. Note that this term vards" es if h is a linear

function of z . The initial corditions -Z (C), and P(o) = -Po are usually

guessed. For the moment we shal not dwell on the question of how to choose

these two initial conditions. An in-depth discussion will be given i.r

Section V.

Extendel Kalman Fiter (for the case without proces, aoise)

The derivation of an extended Kalnan filter for the noisy nonlinear

continuous system with noisy discrete nonlinear measurements as formulated

in Section 2 is given in Section 5. 2. Here, for the sake of comparison with

other" methods discussed in this section, we present a simpler version for a

system without process noise and with noisy continuous measurements.

The name "extended" stems from the attempts which have been made

to apply the Kalman filtering technique developed for linear systems to non-

linear systems through successive linearization at each data point.

Let i, (0o) be the mean of zo (oy , and P ,I? be the covariance

matrices of Y_ (o) and zr respectively, i.e.,
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E - [,,.(t)-ITco))(1 (t)- .o(,)-]

S((3.39)

E W= , Vt

Then the estimate of the aupmented state is computed using (from References

29- 32)

-, d-- ,, :a ( 4-, •+ pm •, ••- •< (t I,tJJ, ,•,<•: 4<° (3.4oa
A aI

( "- 0 (3.40b)

It can be seen fron •2.37a), (3. 38), and (3.40) tha.t the invariant imbedding

method and extended Kalman filterin, are identical if h is a linear function

of x'. It should be pointed cut that, in contrast to the jinear case,

equations (3. 40a) and (3. 40b) are coupled equations, because the Jacobian

matrices ~d/,~i and Ih/N are evaluated along the estimated augmentv.d state

Z (6) . The decoupling of the variance (equation (3.40b) ) from (3.40a)

K can be achieved by evaluating the Jacobian matrices about the trajectory

computed using the previous estimated initial conditions of the augmented
A

state %d, . This version of extended Kalynan filter is equivalent to the

quasilinearization method, as shown in Reference 21.

From the above descriptions oi the various measurement error

methods, it is clear that the conjugate gradient method has the advantages

of computational simplicity and good convergence properties. The Newton's

procedure ic the most complicated from the computational viewpoint;

further, the convergence is not guaranteed. The gradient method, although

computationally simple, has a slow rate of convergence (see, fox instance,

Reference 19). The method of quasilinearization hias had some encouraging

applications in the past (References 12 and 33) for the extraction of stability

and control deri.vatives of conventional aircraft w'jose dynami-s may be rep-

resented by linear equations. lt has moderate computational complexity.

Numerical experience (References 12 and 33) has indicated that the rate of

43



convergence is fast (quadratic) if it converges at all. Tbe sequential com-

putational schemes, as indic-ted earlier, have the capability of treating

both measurement and process noise. From the computational point of view,

the extended Kalrman filter is much simpler than the invariant imbedding

*method, which requires the computation of the second-order partials. For

these analytical and conm.putational ..-asons, it was decided to numerically

assess the following three methods:

1. Quasilinearization method

Z. Conjugate gradient method, and

3. Extended Kalman filter.

However, before we present the numerical results, it seems appropriate to

first examine the basic characteristics of this group of methods.

3. 2. Z Basic Characteristic of Measurement-Error Methods

Froi- the above descriptions for the various measurement-error

methods, it is ,lear that the computational scheme of these methods is

basically iterative; the batch processing schemes are globally iterative and

the sequential methods are locally iterative by updating the trajectory at each

data point. Aside from the Iterative feature, this group of methods has its

own associated statistical properties. Furthermore, there is a problem

associaced with the uniqueness of the solution. Let us first discuss the

statistical properties.

Statistical Properties of the Measurement-Error Methods

In Section V, we shall discuss at length the statistical properties of

sequential estimation schemes such as those discussed in 3. Z. 1. Conse-

quently, we shall discuss here only the statistical properties of the batch

processing methods. The following properties are formally established:

(i) If the process noise wu(t) (or modeling error) is absent,

and if the measurement noise is zero mean white Gaussian
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as formulated in 4. 2, then the batch :ocess estir•ates

are asymptotically efficient (i. e., consistent and minimum

mean-square).

(ii) If the process noise lor modeling error) is absent, and

if the measurernent aoise is nonwhite (time correlated)

but sta-tionary and ergodic, then the batch process esti-

mates are asymptotically unbiased.

(iii) Regardless of white or nonwhite zero mean measurement

noise, if the process noise tr(t) (or modeling error) is

present, then the estimates are asymptotically biased

if thf. dynamical system and/or the measurement system

are nonlinear; however, the estimates are asymptotically

unbiased if both the system dynamics and the measure-

k ment systenm are linear.

The first property is very clear, since under the stated conditions

the estimator is identical to the maximum likelihood (non-Bayesian) esti-

mator as explained at the beginning of the Section 3. 2. Consequently, the

assertion follows (see for example, R'.:erence 34).

To establish the second property, one first noter from (3. 19) that

the regressor is nonstochastic (see Appendix B). Also, as a -l 0 , (3. 19)
I implies r' at Ft 8h I + ih I 1, ( ri3.41)

0 VP 81D

Thus, assuming the process is ergodi:., then, since EI•em•- O,

£~~~ to)(2~4) to'm] I,[1:,p,

as tf - oo. This implies

E 1) = as tV
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as asserted in the second property.

To establish (iii), we note that, in lieu of (3. 13) and (3.14), the

linearization about the trajectory brornes

Hence, in place of 1 '9, we have 4

~-J ,~%Oa ap et (t- •c h 8.,.,,, - /

o (3.43)
Thus, the regressor is still nonitochastic but in lieu oi (3.41) we haveh

[9h s _i %r al, r + A Ir,A

abb J%

-- ' . (3.44)

Since C (w(t)J E'(0)1 = O, and since

r.,M = h r,, if and h are linear

1% Or if4'ard/orhare nonli~near

the assertion (iii) is established.
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Nonuniqueness Problem

All the parameter estimation schemes with . performance index

(3. 11) are essentially methods for solving the nonlinear simultaneous

algebraic equations
:91

•=0 Vi
fPi (3.45)

Indeed, equation (3. 191 i7 3ssentially a scheme of solving equation (3.45)

using Newton's method (with curvature matrix simplified). Since equations

(3.45) are simultaneous nonlinear algebraic equations in the unknown param-

eters, the existence of multi-roots is by no means rare; when multiple roots

are present, the solutions for the unknown parameters will be nonunique.

Indeed, even for a simple system

7, -,aztb (3. 46a)

where • (o) 0 and a., b are the unknown parameters to be identified,

using data

2 
(3.46b)

and t4 = 1,, which resembles (but not identically) a f'rst-order response,

it can be shown that there are two sets of solutions for a. and b that satisfy

(3.45) in the vicinity of the origin. They are:

1. 4 = 0 b = o.88

2. a- = - 1.57 b = 1.48

If one begins with an estimate within the dorrnain of convexity of the

minimum ( a = - 1. 57, b = 1. 48), a use of the quasiiinearization method

converges to that minimum. On the other hand, if one begins with a poor

estimate, which is within the domain of convexity of the local minimum

( a. = O, b = 0. 88), then the subsequent iterations converge to that local

minimum. Results of the computer runs are shown in Figures 3-1 and 3-Z.
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3. 2. 3 Numerical Results from Computer-Generated Data

For the reasons discussed at the end of Section 3. 2. 1, the following

three methods were chosen for numerical experimentations using the

computer-generated data (see Appendix D for a detailed description). They

are:

1. Quasilinearization Method

2. Conjugate Gradient Method

3. Extended Kalman Fiter

Digital computer programs were written for these techniques using

the nonlinear mathematical model chosen to represent the X-Z2A aircraft

(2.9). Both acceleration and state variable measurements were used. The

linearized equations of motion (D. 2) were also programmed on a computer

for each of these methods to save computer time in detailed evaluations.

Table 3. 5 shows a comparison of the results using the data generated from

the linearized model. Acceleration measurements were not used, and the

equations-of-motion method was used as the initial estimator. In perfor-

ming the linear search (3, 32) in the conjugate gradient algorithm, the step

size was first determined automatically on the basis of a norm of the gra-

dient (3. 17). The linear search was then performed by successively doubling

the step size until the perforrrvac index began to increase. Quadratic

interpolation was then applied to determine the optimal mi . The ,orver-

gence criteria used were: (i) change Ln the components of the parameter,

and (ii) change in the performance index. A similar procedure was applied

to the quasilinearization method for the one-dimensional search.

For the extended Ka'man filter runs, the discrete version of the

filter rather than the continuous version (3.40) was used. The discrete

version of the extended Kalman filter is derived in Section V, and is:
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Jr

~~ L -

(3.47)

=,"iiL 1- .4

. A

where x is the augmented state 'z7,ep (for notational conve-

nience the subscript " a". is droppeI .- the obove algorithm); O is the filter

gain; Pk.1kt is the extrapolated cova:iance matrix; /I is the gust effective
A

matrix, and Pk, is the covariance matrix of the -stimate D The

Kalman runs were initialized using the paran;,.. and variances computed

from the equations-of-motion method (equations (3. 3)and (3. 3d), respec-

tively). The initial aircraft state and its covariance matrix were chosen to

be the state at the first data point and k' , respectively. The notation

for the Kalman runs in Table 3. 5 --s to mean that the initial P. used to start

up the extended Kalman is

where P, is a diagonal matrix whose diagonal elements are variances

computed using (3. 3d). The results clearly show that the conjugate gradient

method does not give satisfactory results. For the case in which process

noise is absent and the measurement noise level is moderate (I-C data), the

results using quasilinearization and the extended Kalman filter are compa-

rable. However, with the presence of moderate process noise (I-D data),

&tie parameters estimated from the extended Kalman filter are clea rly

superior. Table 3.6 shows a compari.son of the results of the parameters

estimated from the quasilinearization program and extended Kalman filter

program using a nonlinear model with acceleration measurem:ients. Again,

the Kalman estimates appear to be better.

Frorm the numerical experimentation and the analysis of the basic
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characterisitics associated with the measurement error methods, the follow-

ing remarks are in order:

1. If the process noise or modeling errors are absent, then

the quasilinearization method is a sound identification

technique; however, numerically, problems such as

convergence and nonuniqueness of the solution do exist.

2. The conjugate gradient method does not appear suitable

for VTOL aircraft parameter identification.

3. The extended Kalman filter is a promising technique

for VTOL parameter identification.

4. Since process noise (gusts, model errors, etc.) is

always present, the quasilinearization method is less

promising than the extended Kalman filter.

3. 3 Methods Treating Both IMeasurement and Process Noise

As formulated in Section IT, the problem of identifying V/STOL sta-

bility and control parameters is basically a problem of estimating param-

eters and states in a noisy nonlinear dynamic system utilizing noisy nonlinear

measurements. This problem has been the subject matter of many papers

and reports in the past few years. However, frequently motivated by the

desire to estimate the current state and parameters for control purposes

(see for exanmple, References 35, 36, and 37), the majority of the effort has

been in the area of nonlinear filtering. Schwartz and Stear (Reference 38)

iecz.ntly presented a computational comnparison of six currently available

higher-order (second-order) nonlinear filtering techniques with the extended

Kalman filter, which is a first-order nonlinear filter. They conciuded that,

as far as their numerical experinientation was concerned, the added com-

plexity of the higher order was not warranted.
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However, as we discussed earlier, a fundamental difficulty asso-

ciated with identification of the V/STOL aircraft parameters is its modeling

problem. Consequently, the identification technique must have the capability

of detecting the modeling errors. Filtering alone is not capable of doing so;

the detection of the modeling errors can only be done through dlata smoothing.

Bryson and Frazier (Reference 4) were the first to formulate the smoothing

problem for a continuous nonlinear system; they formulated the problem as

a deterministic optimal control problem with a quadratic performance index.

Although the solution to the nonlinear smoothing problem was obviously

fbrmidable and waa r.DL 4ttempted. they were the first to obtain the recursive

solutions to the linear case. Cox (References 5 and 6) later provided a

general formulation of the estimation of state and parameters of nonlinear

aystems with Gaussian process and measurement noise, and for the linear

case he rederived the smoothing solution of Bryson and Frazier. Subse-
! quently, Rauch (References 39 and 40) obtained a solution for the discrete

linear case. In hE thesis, Fraser (Reference 41) discussed extensively the

comnputaional aspects of the linear smoothing problems. Meditch (Refer-

ence 42) made an attempt to solve a nonlinear fixed-interval problem by

Sdir-ctly solving the two-point boundary value problem using successive

approximations. The computational load is iormidable even for a second-

order problem; furthermore, as new data are received, a new tw-)-point

boundary value problem has to be solved.

In order to investigate in some depth the feasibility of applying a

smoothing technique to the V/STOL parameter identification problem,

Systems Control, inc., Palo Alto, California, under subcontract to CAL,

examined two smoothing algorithms and concluded that

2. Standard Synoothing Algorithm of Rauch

requires large storage for filtered state and

covariance matrices and hence is difficult to

implement.
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A~. A Simplified Smoothing Algoi ithm

* requires the use of only the data but

0 it has computation difficulty.

An alternate simplified "smoothing" algorithm using backward filtering was

proposed. Aithough this method is not capable of estimna.ting the unknown

forcing functions, the parameter estimates may be significantly improved by
"appropriately" increasing the covariance from the results of the first for-

ward filter run to start up the backward filter. However, in all of the above

work, the primary coacern has been with the fixed-interval rather than the

fixed-point smoothing probiem. Fixed-point smoothing is the important

poblem associated with parameter identification, as will be discussed in

Section 5. 1. 3.

The problem of fixed-point smoothing for a linear system was first

derived by Rauch (Reference 39) for discrete systems and later by Meditch

(References 43 and 44) for continuous systems. Unfortunately, very Little

work has been done toward solving the fixed-point smoothing problem for

nonlinear systems, a problem of considerable importance in parameter

identification. In a recent paper, Kagiwada (Reference 45) employed

invariant imbedding to obtain a sequential approximate solution for the fixed-

point smoothing problem for continuou'i ituniinear systems with continuous

nonlinear measurements. Bccause of the deterministic approach of using

the least square cost ft;ictional, the quality of the obtained estimates is

usually hard to int-zrpret. Furthermore, it is interesting to note that the

filtering pass is identicai to the Detchmendy-Sridhar filter (Reference 27).

The Detchmendy-Sridhar filter is only iirst order in the system dynamics

nonli:iearity, anid therefore the bias of the estimates may be significant

,.hen systei nonlinearity is severe. Thus, the development of a new tech-

nique vhic.i doeb no. have this limitation for V/STOL parameter identifica-

tiun is required.

The development cf a new technique is described in detail in

Section V. In developing the technique, a continuous nonlinear system driven
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by white Gaussian noise with noisy discrete nonlinear measurements was

considered to characterize the model - as formulated in Section II.
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TABLE 3-6

•7omparlson of Methods Using Nonlinear Model

2_t. .D-I÷

a, Actual Mode.-a.te Measurement Noise Moderate Measurement Noise
Value Q ua rsxoin.fT $ QUasilin-'r a

, ear¢za$on t , Eearzation

.01 -1.281 - I. 2 2.96 b6- 1 .•6 1 4758
!-.00308 .02197 .(,Z!16 -. 9)064 .019898 .019898 .OZ05

\ -6. ZxlO" -9.3x10- 5 9.', 3xi0"i 8,6 x.O"0 -. 0001136 -. 00011361 -4. 3xO.1

)-.001747 .02061 .01953 -. 00294 .01094 1 .01094 -. 001631

-5.53x10 5  -. O00GZ8 -. 000,16 1 -4.3x10"5 -. 0001801. -. 00018041-7.64x!.1j

-497 -285 -. 67Z61 -1 28 .Z8 -.8519
-. 00163 .01777 .01649 i000E5 .007815 .007815 .00315

jM JI .3Z757 37613 .467,12 .336 7305 -. 7305 -. 8

, II00116 0006687 .0001056 . 0 0 11 009188 009188 .0080

S/• l8 . 30 - 15~ s .. - 128 .84 13 . 9 i - 19 .14 8 i- 19 .1 t477 -5 ,.6 7 1

•~ ~~ • ,a- 90 ,.33 I. 5S7 -. 0297 .480Z .4802. .2z408

"":•/,•-. 0003 "".002'34 ."00468 -. 0005.3 1-. 002485 -. 00Z485 -O0 i 49

ZZfI.211 .6174 I .9.14 -. 257 t933 .6933 .4469
yI P

•" tr) 1.00.587•1.00464 1.0068 -. 00189 -. 005.92 1-.005292 1-.00318

+ See Table D-Z, Appendix D for explanation and definition of noise levels.
Z-C- I and I-D- I data were generated using the control perturbation shown below

456} 
fe t0•me (S6c)
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It
SECT,:ON IV

PARAMETER IDENTIFIABILITY

The identifiability of parameters is concerned with the ability to solve

"for all the unknown parameters from the given data. It is intuitively obvious

that those parameters which have no effects on the data cannot be identified.

Consider a hovering X-2ZA aircraft in cain air, for example. Then, for

application of a collective input AB, , all the stability and control parameters

with the exception of the vertical damping Z,, and the vertical control effec-

tiveness Z$ will noc affect the data. Since in this situation only Z. and

affect the data, it is intuitively clear that no parameters other than these two

can be identified.

Perhaps it was Lee (Reference 46* who first discussed the identifi-

ability of a system. He examined the identifiability of a single output linear

autonomous discrete system and found that the system was identifiable if and

only if the initial state vector (initial conditions of the system) excited all the

natural modes of the system. Subsequently, Fisher (Reference 47) studied the

identifiability t"f a continuous single input linear time-invariant system and con-

cluded that the system was identifiable if and only if the system was coin-

pletely controllable and the control function was not linearly related to t&-e state

variables.

It was not until recently that the problem of identifiability of nonlinear

systems was toucl-ed upon. In identifying the orbit parameters from lunar

orbiter tracking, Pfeiffer (Reference 48) loosely defined unobservable, weakly

observable, and strongly observable parameters. He defined the observability

of these parameters in terms of the diagonal elements of an orthogonal trans-

formation of the matrix in the normal equation resulting from a linearizazion

of orbit equations aLout the nominal trajectory. Experience in linear systems

has indicated that idenLfiability is a property different from observability;

the former depends on b'th system and input, the latter, however, depen is on

the system only. Because of this. a clear cut condition for the identifiab:.lity
of nonlinear systems has been lacking.
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Closely related to the identifiability problem is the problem of the

uniqueness of the solutions. There appear to be two differ -nt uniqueness proo-

lerns: one stemns from tht system configuration, and the other from the data

(inputs. and outputs) given. The latter problem was discussed in Section 3. 2.

Comparatively speaking, it has received less treatment than that stemming

from the system configuration. Lavi & Strauss (Reference 49) were perhaps

the first to mention this problem; unfortunately, without offering their own

study, they only suggested that this problem should be investigated.

In the early stages of our study of the identification of VTOL aircraft

parameters, it was found that identification techniques such as quasilineari-

zation did not give unique solutions - the solutions depended upon the initial

estimates. This prompted an investigation into the problem of identifiability

and uniqueness of the solutions. Some results of this investigation are pre-

sentea here.

4. 1 Identifiability for Noiseless Measurements - Linear Stationary

Systems

To begin with, it seems instructive to analyze the simplest case,

namely the case in which the system is linear and the data (output) are noise-

less. Consider the following problem:

Given - A mnlti-input, multi-output linear time-invariant system

System ( = F (4. la)

W •) () (4. lb) S

where 7 is the state, n-vector

it is the control vector, r-vector

y is the output, in-vector

and the data Ia(O) and q(y) are given for 0 t4 t;
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rFind: the triple (-,&;,

ii

(a) Uniqueness problem and the: maximum number of

independent parameters -

Tt is readily seen that there is no unique solution for the triple

S(r •: }. Indeed, there are infinite sets of ( F, 6 ,/I) that are satisfied

by thc eqia.iens (4. la) and (1 lb) with the data given. To see this, let us

consider a noi.singular linear transformation M such that

Y, (4.2)

then

=MF'M" z + M (4.3a)

q (4. 3b)

Note that, as far as input-output relationships are concerned, systems

(4. 1) and (4. 3) are completely equivalent; therefore, the solution for

(F 6 , C /) is not unique. It is to be noted also that in equations (4. 1), there

is a total of 7(7m÷')parameters. However, these parameters are not

independent insofar as the input-output relationships are concerned. In fact,

it can be shown that there is a maximum of only n(÷nmr) independent param-

eters (Reference 12).

As a result of the points discussed above, it can then be shown that

only the transfer function matrix relating the outputs to the inputs can be

identified. The transfer function mriatrix for the system (4. 1) is unique, and

is independent of the coordinate systems (4. 2). Indeed, from (4. 3)

b'Af ISM-! _FM /(G&6 (4.41

S[sIT-F] aU (S
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which is the transfer function matrix for (4. 1).

(b) Identifiability conditions and the solution -

In order to avoid the nonuniqueness problem for the triple ( F,

Sk/1 ), consider the special, but im portant, case in w hich all of the state

variables are measurable, i.e., -/ = . Then:

System = Rz• (t) + a (t) (4. 5a)

q() =',) (4. 5b)

From (4. 5a) )

0 0

Let

A(. = (- ) - n-vctor function

(r)) = T - n-vector function

v(b) = f a(z)ht - r- ector function
0

Then

(t) r)(4.6)

Define

A /ýf -(± [t :r(t,)]dt (4. 7a)
0

Note that

Ais 77 x ("4 r/) constant matrix

3 is ( r)f(n4lr) constant matrix

If 1 has full rank (i.e., nonsingular), then
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A [F G] :9 (4.8a)

or

A13- 1r~ 4.8b
Thus, system ( 5-2) is identifiable if and only if B is nonsingular. It is

clear from (4. 7b) that B is nonsingular if and only if F - - are Iinea 'i'
, yae)

independent. Physically, this means that all the natural modes of the s/

( "2 ) are excited and the control functions are linearly independent of the

state variables and also independent of themselves. Fisher has investigated

the case in which V(t) is a scalar function (i. e., a single input case) and

concluded that the system ( 5-2 ) with single input is identifiable if and only if

the system is controllable and the control function is linearly independent of

the stable variables. In the multi-input case, this set of cond'tions is not

sufficient, because the controllability of the pair (1- , C ) does not imply

pairwise controllability (i.e., (F * g ( q? ) j".',( - q,. ) are

controllable where & " Thus, we conclude that:

M (i) System (5-2) is identifiable if and only if all the natural modes

of the system are excited and the control functions are

linearly independent of the state variables.

(ii) A sufficient condition for the system 5-2 to be identifiable

is that (F, q 1 ) ,i -2,..., r are pairwise controllable

and the control functionb 4s () are linearly independent of

the state variables, and are also independent of themselves.

It should be pointed out that the above conditions for identifiability are

restricted to linear time-invariant systems. It is conceivable that this

approach cannot readily be extended to nonlinear systems, which are of

major importance to the VTOL parameter identification problem. In the

following section we will take a different approach which utilizes the concept

of .he sensitivity vector functions.
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4.2 Sensitivity Vector Functions

Linear System - Deterministic Case

in this section we shall discuss the importance of the sensitivity v;ec-

tor functions. Unlike quantities such as natural modes, which are of use

solely in linear systems, a set of the sensitivity vector functions is a unique

entity in both linear and nonlinear systems. Let us consider first the system

5-2. Differentiating (1. 5a) with re pect to a representative parameter pi{'orf;)

gives d Ox 90 9z
Fx(t) (4.9a)

d 9% 9 X, •G

-f 91p- (4. 9b)

(0).,t(0)=0 ,t =2 ,9 ,...,q (4.9c)

0 ,,

where p and a are the total number of parameters in P" and N respectively.

To see clearly the sensitivity vector functions in (4. 9c) consider a third-

order system with all nine unknown elements in r and six. unknowns in 6

We have &ten d 0~
-- = FI 0

, 7\ 0

d .. w, he z v /
- 0de i9P3  r.3 0

-=F---+ + (Xt(it 910 9P+ 0o

d 49-V 9,x 0
d ._ /0 (4. lOa)

dt P
9P 7
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d 9 -- (+

dt '9I .70w

: F • I /O1

d 9% = 9Z ( 0
0]0

dt 0lt at 0

d Py / (4. l Ob)
0

d F 9Y 4( 0

cit

wheve.

l\

The solution to the first eqation i:% (4. 10a) for example, is well known and is

given by

Since the transition matrix e 't is nonsingular, i.e., all its columns (and

hence its rows) are linearly independent, and since the integration (4. 11) is

a linear operation, it is readily seen from (4. 10) that

(i) .f Y (6) , %z (t) and %., () are linearly independent and

the control functions a., (W and a-, (t,) are linearly

independent and are also linearly independent of le ' 2 0)

and Y, (W), then all the sensitivity vector functione are

linearly independent.
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(iG) The sensitivity functions are linearly depeadent if the state

variables are linearly dependent or the control functions

are linearly dependent among themselves or are linearly

dependent upon the state variables.

It is not difficult to see that these statements hold for a general case other

than a third-order systemri.

The above conclusions can be combined to become:

Theorem 1

The sensitivity vector functions are nontrivial and are linearly

independent if the state variables are linearly independent and the control

functions are linearly independent and also linearly independent of the state

variables.

Using spectral decomposition (References 50 and 5i) and using the well

known fact that a modal matrix (matrix consisting of all the eigenvectors)of F

is nonsingular, it can readily be shown that the state variables are linearly

independent t' and only if all the natural modes of the system are excited.

Using this fact we establish the following important re-sult:

Theorem 2

The sensitivity vector functions are nontrivial and are linearly

independent if and only if all the natural modes of the systen, are excited and

the control functions are linearly independent among themselves and are also

linearly independ- * of the state variables.

The abov,. orem clearly indicates that the linear independency of

the sc-nsitivity vector functions is equivalent to the identifiability conditions.

Thus, we have established the -llowing theorem:
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System ( S-2 ) is identifiable if and only if all the sensitiviiy vector

functions are nontrivial and are linearly independent.

From Theorem 3 it becomes apparent that an approach that uses

sensitivity vector functions in lieu of equation (4. 8) is possible. Denery

(Reference 12) recently proposed a method for obtaining an initial parameter

estimate using sensitivity vector functions and a state observer concept

(Reference 5Z),as we discussed in 3. 1.

Special ;ase of System 5-! When H is Known

At this point, it is important tG point out once again that the triple

F( , G , 14 ) in the system 5-1 is, in general, not identifiable. However,

if b/ is known and is square and nonsingular, then the above results stiil hold.

If, on the other hand, 14 is no" a square matrix, then the output sensi'zivity

vectors

af-P

are no longer linearly independent even if c9/%1.p; are. In other words, the

output sensitivity vector functions are not linearly independent ii the number

of the unknown parameters in F and 0, is more than -n ( 'i. This is

illustrated in the following simple examples.

Example 1. Let the true values of the following single input - single

output linear system

be

It is readiiy sren that the system is controllable and observable. Note that

the system can have only a maximum number of four ( Zx (1+ 1) ) independent

parameters.
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Let h be known and the nonzero parameters in A and b be unknowns.

Note that there az - four parameters and hence the condition for maximum

nunber of independent parameters is met. A perturbation of those parameters

- front thý-ir true values yields the following (state) sensitivity vector equations

with zero initial conditions:

d 9Y W

a ;-" =A 9a (

ot • #9a ',, 0

d cl-( 0

--- A -- f

dt tb Ub,

9b 0b

Let the control function u(e) be a unit step function for the sake of algebraic

simplicity. A straightforward computation shows that

•a.(O 0- , i(-t')-fe'to

2L 4 Z
S[ (1ed

L

r

a ,b2  1 -S'_ (,_e -=') i

It is clear that thtese (state) sensitivity vector functions are linearly indepen-

dent. The output sensitivity functions are also linearly independent. They
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k
a_,, t) t/ -

Y4)• hr (---e -• 'e2t)-' "x
q2(t) , h' (--2 --)

Example 2. Now we consider the case when the true values of A and b

areA) b= )

A J o -3#

Note that the system is stiil cnntrollable and observable. However, the-e

are now five unknowns. A perturbation from these true values and again

using a unit step function for the control function a. (t) yields the following

(state) sensitivity vector functions:

9a,, L 0
9x, [ Ct-- --- -"•)

V fz _ o(-e

i# -t .. ) -•te I

Lb L

7;5

I0•<)'I-"

i •, -3(-e :
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"Ite state sensitivity vector functions are clearly still linearly independent.

However, the output sensitivity functions are no longer linearly independent.

They are

A 9,x __-t 5t 3-e)-

q2(Y")- h'()-'- j '-e•) - (f-e"•)

hr /

23 + e6A,) h'(-Z".)- (;-e')- 1 ,)Ze

4 x4

From these examples, it is evident that for the deterministic case,

identifiability implies uniqueness. Thus, nonuniquerness due to rhe system

configuration is of no major problem in p;rameter identification. The major

problem of uniqueness is due to data as was briefly discussed in Section 3. Z.

Linear and Nonlinear Systems w.ith Noisy Measurements

In the above discussion, we have restricted ourselves to the noiseless

linear systems. It was shown that if a system is identifiable, the solution

can readily be obtained without iteration and without initial guess values for

the parameters. For noisy measurements, the regressor in the nor-mal

equation (4. 8a) becomes stochastic, and the initial esti-nates using (4. 8b)are

asymptotica!iy biased. The bias can be removed using iterative techniques

such as the method of quasilineariza tion as discussed in Section 3. 2. We now

continue our discussions on the im-,portance of the sensitivity vector functions

in coiriunction with the uise of these methods. In order to be consistent with
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equation (4. 8a), we shall first consider the quasilinearization method.

Consider the following problenm

(Y-, P, M) ly (0)(4. 12a)

+ = tr (4. 12b)
where

, = state vector

S= output vector

if = error vector of the measurement

= control vector

= vector function of appropriate dimension

As shown in Section 3. 2, •h¢. juasilinearization algorithm for the parameter

estimation which minimizes the performance index

0

where t, denotes the final time and W is a positive definite symmetrical
f

matrix, is as follows
A A

Pda(~
FA 1 (4.13)

where

- ( ) 0 for parameters

d f9%\_ f
-I-)t -L (0) I for initial conditions

dt 9,P I

/J) ~ dt (0)(4. 14)
0
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It is clear fromi (4. 13) that the sensitivity vector functions in the sen-

sitivity matrixyz/'9P must be linearly independent in order to have the matrix

inversion n (4. 13) exist. In other words, the nonlinear system (4. 12) is

identifiable by the method of quasilinearizadion if and only if the sensitivity

vector functions -are linearly independent. From the connection estab-

lished in Reference 19 between the method of quasilinearization and extended

Kalman filtering, it can be shown that the above statement is also true for the

method of extended Kalman filtering.

In general, the output in equation (4. lb) is to be replaced by

and the linearity of the output sensitivity vector functions

becomes essential for the identification of the unknown parameters p in (4. 12a).

4. 3 Problem of Uniqueness Due to Data

On the basis of the previous discussion, it can be shown that, for the

deterministic case, the solution for the parameters is unique if the system is

identifiable. For a noniterative scheme (such as the scheme defined in equa-

tion (4. 8b) ), it is clear that the solution is unique regardless of whether the

system is linear or not (as long as parameters enter in the equations It early).

Furthermore, the parameters identifi,-d are the true values. Table 4-1 lists

the results of two numerical experiments for both a linear and nonlinear rep-

resentation of a VTOL aircraft. For an iterative scheme such as equation

(4. 13), the identifiability also implies uniqueness (within a reasonable bound

resulting from the convergence criterion used in the iteration). The fact that

the residue vector y- zy{.) in equation (4. 13) can be identically zero perr-its

the condition that 6.P =0 be aitomatically satisfied6. " e., the residue veclur

i- Y(!) is orthogonal to the subspace spanned y the- sensitivity vector

ýu..ctions -- in the language of Hilbert space: (Referenc' 50). However, due

to the convergence criteria us-d in the iterative scheme, uniqueness, in the

sense o. the numerical values identif.ed, is not computationally possible if
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the initial estimates are not the same (and the computer time is limited).

This statement has also been confirmed by some numerical experiments.

If, on the other hand, errors exist in the measurements, then identi-

fiability does not imply uniqueness regardless of whether or not the system

is linear. In this situation, a noniterative scheme such as equation (4. 8b)

will give a biased parameter estimate (see Appendix B). Therefore, although

the solution is unique for the given data, it becomes useful only to provide an

initial estimate for the iterative methods. For iterative methods, the non-

uniqueness probiem has already been discussed (Section 3. 2). We shall not

repeat it here.

4.4 Concluding Remarks

In conclusion, the following remarks on the identifiability and unlque-

ness problems associated with parameter identification of linear and non-

linear systems are evident.

(i) A system, linear or nonlinear, is identifiable if and only

if the sensitivity vector functions are nontrivial and are

linearly independent.

(ii) The sensitivity vector functions are nontrivial and are

linearly independent if and only if the state variables

are linearly independent and the control functions are

linearly independent and are also linearly independent

:of the state variables.

(iii) For the deterministic case, the solution for the param-

eters is unique if the system is identifiable.

(iv) If errors exist in the measurements, then the identifiability
-~I

does not inmply uniqueness, regardlhss 3f whether the

system is linear or not.
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SLnce the sensitivity vector functions depend not only on the system but also

un the iliput, it is extremely desirable to design an input to increase the

sensitivity and hence the parameter identifiability. Problems concerning the

design of an appropriate input are discussed in Appendix F.
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TABLE 4-1

Parameter Identification for Noiseless Data

Using a "Least-Squares" Method

Linear Representation Nonlinear Representation
parameters true identified ararneters true identified

"•-.0044 -. 004400 )flo .50518 1.505177

'•" •0075 -. 00749999 '.• -. 00308 [-. 00307997

V -.625 -. 624524 -6.2 x10 -6. 0007 x 10-6

M .480 .479999 9-9-a, -. 001747 -. 00174696

S•'1• -. 0000553 -0000553302

[: • -. 150 -. 150002 -• -497, -. 497336

x•• t, .021 .0210088 • -00103 -. 00103125

1.370 1.36996 .3275 .327503
'G $ .001167 .00116697

SZ, -. 216 -. 216004

-. 650 -. 649985 X, 18.3 18.2996

Z 1.660 1.65994 XO( -. 09167 -. 0916648

-. 0003 -. 000300018

.22il .2Z1103

-. 001567 -.00158703

-.778 -. 777760

(.fe• .0184 -. 0183981

-32.171 -32.1717

.910 .910010

-. 007 -. 00700004

•" -. 2939 -. 29389-)

-. 00287 -. 00286705

•'s -. 3507 -. 351216

ig~ .01667 .016674i
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SSEC iON V

DEVELOPMEANT OF ADVANCED IDENTIF iCATION TECHNIQUES

The parameter identification of VTOL aircraft as formulated in Sec-

tion II is fundamentally a problem of nonlinear estimation. By annexing the

constant parameter vector to the state vector, it becimes apparent that

parameter identification is a problem of state estimation of a nonlinear sys-

tem even if the original equations of motion are linear. We note also that

if accelerations or a -vane serpors are used as measurements, the mea-

suremrent system is also nonlinear.

For the reasons discussed in Section III, the equations-of-motion

"method (a least-square method) is chosen as the initial estimator for the

extended Kalman filter, which appears to be a very promising method for

parameter identification for VTOL aircraft. However, as is shown in

Appendix H, the extended Kalman filter is a biased estimator in the presence

of nonlinearities, and nonlinearities are inherent in parameter identification

problems. Since the extended Kalman filter algorithm is derived on the

assumption that the estimate is unbiased, (as is true in the linear case), the

quality of the estimate is overestimated. The extended Kalman filter may

be regarded as incorporating a gain which changes the estimate of a param-

eter based on the quality of its previous estimate. Recalling that the Kalman

filter is a sequential estimator, it can be seen that an overly optimistic

estimate of the parameter quality forces .ae filter gain to decrease and there-

fore the filter relies less on subseque.it data.

As is shown in Appendix H, if initial estimates are unbiased, the bias

of the extended Kalman filter estimates depends on the multiplicative effects

of the system and measurement nonlinearities and the covariance of the esti-

mate. As the entire data are processed by the extended Kalman filter, the

variances of the final parameter estimates reduce from thos-. of the initial

estimates. One may thus be tempted to reuse the data all over to reduce the

bias of the estimates. Two schemes of reusing the data have previously been

tried and aie shown in Figure 5-1. Both methods regard the first extended

Kalman filter as the second initial estimator (the equations-of-motion method
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being the first initial estimator). However, the second extended Kalman in

the first scheme uses the data in a forward manner; whereas the second

filter in the second method uses the data in a *3ackward fashion. It is apparent

from the above discussion on the basir .naracteristics of the extended Kalman

filter that the second scheme Vhas the virtue of being able to appropriately use

the last part of the data, if the variance of the parameter estimates at the

end of the forwýard pass is "suitably" increased in some artificial way.

However, a fundamental difficulty common to both schemes of reusing the

data is the determination of how co adjust the variance of the parameter esti-

mates from the first filter to start up the second filter.

Another major difficulty associated with identification of the VTOL

aircraft parameters is the relative uncertainty in formulating the equations

of motion due to the complex interaction of propulsive and aerodynamic forces

and moments. Consequently, the identification technique must have the

capability of detecting the modeling errors to facilitate an improvement of

the model. As was discussed in Section III, the detection of modeling errors

requires the estimation of the unknown forcing functions, which can be ob-

tained only through data smoothing. Initially, we (and SCT':s subcontract

work) directed our efforts toward examining more or less exclusively

the feasibility of applying fixed interval smoothing techniques to VTOL param-

ePer identification. However, the fixed interval smoothing algorithms cur-

rently available either require an extremeiy large amount of storage for the

filtered state and error covariarce matrices or have computational difficulties.

Thus, our major efforts in the development of techniques for VTOL

parameter identification have been to overcome anr./or to alleviate the

aforementioned difficulties. Specifically, the following tasks have been per-

formed[

(1) Development of a locally iterated filter-smoother (multi-

corrector) for better parameter estimation.
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(2) Development of a fixed-point smoothing technique to

facilitate the computation of the unknown forcing

functions to aid in detecting model"ig errors.

(3) Improvement of the variance computation to better predict

the quality of the parameter estimates.

This section is organized as follows: Section 5. 1 describes in detail

the developed techniques; Section 5. 2 presents the derivation of the locally

iterated filter-smoother and the fixed-point smoothing algorithm; the com-

putational algorithm for the unknown forcing functions is discussed in Sec-

tion 5.3; and Section 5.4 discusses the improved covariance matrix com-

putations. The results of numerical experiments are shown in Section VI.

5. 1 Description of the Developed Techniques

After the externded Kalman filter computer program had been developed

and selected as the major tool for VTOL aircraft parameter identification,

subsequent efforts were directed toward improving the accuracy of the param-

eter es'imates by raeveloping a multi-corrector Kalman filter technique,

developing a fixed-point smoothing technique to facilitate the computation of

unknown forcing functions to detect modeling errors, and obtaining a better

prediction of the qaality of the estimate parameters. Figure 5-2 shows a

schematic diagram of CAL's developed identification program. Details of

t-ach block in the figure are described in the following subsections.

5.1. 1 Initial Estimator Program

As discussed ini Section III, the initial estimator program is essen-

tially a computer program using the equations-of-motion method. Using the

measured data of inputs and outputs, this program produces a set of param-
ee estimates and a set of approximate variances of the estimates. When

measurements are corrupted with noise, as is always the case in a practical

s.tuation, this method of parameter estiamation produces biased estimates.
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As the measurement noise to signal ratio increases, the bias increases. As

a result of the bias, the variance computed from this initial estimator program

(3. 3d) poorly represents the true quality of the estimation error. Depending

on the level of the measurement noise, or more precisely the noise-to-signal

ratio, the computed variance can be grossly optimistic, i. e., the computed

variance is too small in comparison with the square of the actual estimation

error. As a result, variances from the initial estimator are too small to

properly "start up' the multi-corrector filter program. Therefore, in all

previous identification runs, either generated data or f ight test data, it was

necessa -y to use engineering judgment to adjust the initial covarian~e matrix
P~o).

& Experience has shown that an increase in the computed covariance

from the initial estimator program by a factor of ten produced the best re-

sults. However, the best factor to use in each part;cular situation is not

known, since it is strongly dependent upon the control input and noise levels

present. Thus, a more automatic and preferable way to start up the multi-

corrected filter is to calculate P(O) by a different scheme. Discussions of

this and related problems wil! be given later. In the following, we shall

4 first describe the multi-cerrected extended Kalman filter, the fixed-point

smoother, and the computation of the unknown forcing functions.

5. 1. 2 Multi-Corrected Extended Kalman Filter

Previously we discussed the fact that the extended Kalman filter is a

biased estimator in the presence of nonlinearities, which are inherent in

parameter identification problems. One way to correct for systern and mea-

surement nonlinearities is to include higher-order terms in the Taylor series

expansion about the reference trajectory (References 38 and 53). TIhis leads

to computationally unwieldy correction terms in the filtering algorithms.

The other approach is to use some "local iteration' algorithm based on the

extended Kalman filter in conjunction with the use of one stage optimal

smoothing. By local we mean iteration at a data point at time ti, r . or in

an interval t.. fI . The purposes of the iteration is to improve the
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reference trajectory and thus the estiute in the presence of nonlinearities.

A schematic diagram of the locally iterative process is shown in Figure 5-3.

The algorithm is obtained by linearizing to a first order the system

and measurements around the best estimate at each data point. For example,

starting at t+ with Y,- and Pk , the estimate and covariance given the

data up to time ti respectively, we linearize and predict to , the time

of the next data point and apply one iteration of the extended Kalman filter.

Based on this new estimate, we smooth back to tk (one stage smoothing).

The smooth'-ng closes th.. loop, providing an improved reference for predic-

tion to ti, , and the extended Kalman filter is again applied at data point

tk. I after recalculating the extrapolated covariance and gain. The iteration

terminates when there is no significant difference between consecutive itera-

tiono, or after a prespecified number of iterations. Experience has indicated

rapid convergence of the algorithm: rarely have more than two additional

iterations been required.

Analysis has shown (Appendix H) that this scheme can significantly

reduce the bias inherent in the extended Kalman filter, thereby improving the

parameter estimate as well a s the calculated variance of the estimation error.

Because of these improvements, reuse of the entire data is not required after

a complete pass is finished, thereby eliminating the engineering judgment

inherent in increasing the variance of the parameter estimation error to

recycle the data. A detailed derivation of the multi-corrector extended

Kalman filter algorithm is given in Section 5. Z. For the sake of easy refer-

ence we summarize the algorithm below. Notations are shown in the list of

symbols.

The first iteration is the extended Kalman filter and the one-stage

smoothing algorithm:
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T p,
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Denoting ) = and . = the second itcration
and iterations thereafter (i = Z 3....) are given by-.

A W O W 0 f) /A(-) A'(-f)

A ri, ,i. u.- ) ,, _ (s-,)

Wi T(i) (p (5.2)

,* -, 1 -6 , 4 - , , f A

t)( L C.i)) /= a p I

tIt + *?
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5. 1. 3 Fixed-Point Smoothing

We have discussed modem-, data smoothing in Section III. In contrast

to the filtering discussed above, the data smoothing is concerned with the

estimate of the augmented state at some time in the past given data up to the

present. Since the response caused by the unknown forcing function exerted

on the system at time t will be contained in the mneasurementfs at time td-t

further "down stream" of t , it is obvious that, by smoothing, the augmen-

ted state estimate can be improved and, further, the unknown forcing function

,-an be estimated.

Data smoothing can be classified into three classes: fixed-interval

smoothing, fixed-lag smoothing, and fixed-point smoothing. Fixed-interval

smoothing is concerned with the estimation of the state at some time t be-

tween the initial time t, and 'he final time tt given all the data up to -*.

fixed-lag smoothing is concerned with the estimation of the state at some

time t given data up to t *T for some fixed value -r ; and the fixed-point

smoothing is concerned with the estimation of the initial augmented state,

that is, at t 0 , given data up to some time t.

The "ixed-interval smoothing algorithm for a linear system was first

developed in the early sixties by Bryson (Reference 1), Rauch (References 39

and 40) and others. Subsequently, there was some work on the applicatdons

of thcir algorithms to -roblems of engineering significance (References 41

and 54). In view of the past experience, in the early stages of this project

we diructed our efforts toward examining more or less exclusively the

feasibility of applying the fixed interval smoothing techniques to VTOL param-

eter idenitification. Our major interest was to see if it is feasible to improve

the model of the VTOL aircraft dynamics by examining the unknown forcing

function that can be obtained from smoothing techniques. It was found

(Reference 55), however, that the fixed interval smoothing algorithms cur-

rently available require either extremely large amounts of storage for the

filtered state and the error covariance matrices, or have computational dif-

ficulties.
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I
Subsequently, in a further search for some practical ways of esti-

mating the unknown forcing functions, we re-examined the entir., set of

smoothing techniques, and it is our belief that the fixed-point smoothing tech-

nique is the m-iost suitable technique for estimating the initial state and the

parameters, and from them to start the estimation of the unknown forcing

functions.

In contrast to fixed interval smoothing, which requires a -.'mplete

filtering pass before it can proceed with its smoothing pass backwards, the

fi:.-ed-point smoother obtains its smoothed estimate as the filter proceeds

forward. A schematic diagram is shown in Figure 5-4. The detailed devel-

opment of the fixed-point smoothing algorithm is given in Section 5. 2. The

basic features of the algorithm are that no storage for the ::iltered state and

the error covariance m-atrices is required, as the algorithm works in con-

junction with the multi-corrected extended Kalman filter. Furthermore.

there are no computational difficulties associated with this algorithm. Also,

the computation of the unknown forcing functions can proceed with the com-

pletion of the entire pass of the fixed-point smoothing estimate. Conse-

quently, previous difficulties associated with fixed interval smoothing are

avoided.

For convenience, the fixed-point smocthing algorithm is given below.
= .t. [•Es~z~u41/I,(op.,) = Y-(l)B,.,Y"

13*,f =3* j [I- O Hi(5.3)

where B = dummy variables
= gain matrix of the last local iteration
= transition matrix of the last local iteration

= tranoutput matrix of the last local iteration

2: measurement error covariance matrix

PO initial estimation error covariance matrix

' . _ ,( ÷) i _ I 0/ ^
Residual - AI, -I•., ("I,-Z,,-" (' (tC):., - ,k ,)

and the superscript "(+)" denotes the last local iteration.
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a
5. 1.4 Computation of Unknown Forcing Functions

To achieve the goal of employing the best possible mathematical

model of the X-22A in transition or at fixed operating point (FOP), we need

some means of evaluating the errors in the models. If we have the capability

of determining this error from the identification process, then it is expected

that having the form of the error in a given model will help in selecting terms

that are missing and thereby help to improve the model.

For the sake of analytical sinmplicity, we regard the error in the

assumed model as a white, stationary random process with covariance Q

We estimate this error (called unknown forcing function) after the completion

of the fixed-point smoothing part of the analysis for the initial state and

parameters. This procedure is, from a computational pint of view, better

than the conventional approach of using fixed-interval 3moothing.

The derivation of the algorithm for computing the unknown forcing

function is given in Section 5. 3. Here, ve simply list the computational

algorithm for it.

A Ak,4I p4[^ý

where

N- vector of forcing functions

A

with initial condition *zljV

A
,OxW - fixed point smoothing estimate

q.',./ - represents nonlinear integration from t.o

with initial condition

which is the smoother gain matrix stored on a forward

filter pass
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-4 q .-I extrapolated filter covariance matrix

A

-[ filtered estimate

- one stage smoothed estimate for Z

This computation is performed at the completion of a forward filter
A A

pass and the fixed-point smoothing computation. a~ - 4 and -Y are

computed and sorted during the filter pass.

5. 1.5 Better Prediction of the Quality of the Estimated Parameters

A very desirable feature of an identification technique is to be able

to predict, with reasonable confidence, the accuracy of the estimated param-

eters. In the identification technique developed for the VTOL parameter

identification program, three ways are used to judge the quality of a set of

parameters and each individual parameter of that set. These are:

(a) Transient response matching to measured data.

"(b) Identification consistency check using the predicted

residual sequence (measured data minus the predicted

value) during an identifi:ation run.

(c) Variance computation of estimated parameters.

A discussion of each check follows:

(a) Transient Response Matching.

One test of the validity of an identified model is its ability to reproduce

the measured responses (within the measurement accuracy) from which the

parameters were originally identified, where the identified model includes

the estimated unknown forcing term. If the random forcing function is truly

zero and the form of the model is correct, then the model should also match

other measurement data with any control input.
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In practice, it has been found that if the measured responses are

insensitive to a group of parameters being identified, then these parameters

are likely to be inaccurately identified even though a model using these param-

eters could match a particular measured response very well. Thus, a good

input design (Appendix F) and transient response matching to data with dif-

ferent inputs is very important.

(b) Residual Consistency Tests

Another independent measure of the identification technique perfor-

mance is to perform statistical tests on the predicted measurement residuals.

The residuals are the differences between the actual measurernents and pre-

dicted measurements. If the assumed noise and dynamical models are fairly

accurate, these residuals should be small, random, zero mean and should

possess statistical properties consistent with their calculated statistics. For

example,

= 14 A ,I. A ( (5. 4a)

pgf 9 P(5 4b)
4,

where is the predicted measurement residual, £ is the expectation

operation, and P- is the covariance of . We can then plot the square

root of the diagonal terms on the righthand side of (5.4b) against the actual

residual sequence to see if the filter performs as it predicts.

(c) Improved Variance Computation

Sta'-t-up procedure for the locally iterated filter-smootker

To obtain a quantitative measure of the quality of each parameter

estimated, the variance of the parameter is computed. As discussed pre-

viously, the initial estimator is a biased estimator. Also, the variances of

the parameter estimates are computed by the initial estimator based on
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"classical linear regression theory with nonstochastic regressor for use in
the initial covariance matrix, P . As measurement errors are always

present, the regressor is in actuality stochastic, and the variances com-

puted for the parameter estimates are only an approximation.

From experience ueing computer generated data, where the noise

levels are known, it has been observed that the variances of the parameter

estimates from the initial estimates are in most cases too smali to cor-

rectly represent the accuracy of the parameter estimates. Best results

were obtained by increasing the computed variances by a factor of from I to

"10 equally for all the parameters. This increase is necessary to account for

the bias of the initial parameter estimates, as it forces the filter to place

less weight on these estimates. Although the variance of each individual

parameter could be increased by different factors, the computer time re-

* quired to obtain the best combinatiorn of factors by experimentation would be

formidable. Furthermore, the best factor to use in eacn particular situation

&s not known in general, since it is strongly dependent on the control input

and noise levels present. In view of the erroneous variance computation, it

is doubtful that equally increasi..g the variances by the same factor is appro-

priate. It seems more appropriate, therefore, to first more correctly com-

pute the variances of the estimrated parameters and then increase them

equally to keep their magnitudes in the proper proportion.

A better scheme to start up the Kalma.n filter from initial param-

c.er estimates is to calculate PO for the parameters by an independent

technique. If the init'al parameter estimates are produced from an efficient

estimator, then the covariance matrix, P , for the initial parameter esti-

mates can be shown to approach the Cramer -Rao lower bound, C 2 . There-

fore, the following equation can be employed in the calculation of the inmproved

start-up covariance 1 • Here, the nmatriccs CA,/_f and 1-i are evaluated

along the trajectory using the initial estimated parameters.
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Since the inverse of C' is the sensitivity matrix, which is useful for input

design, the initial covariance computation has also been coded as shown in

rFigure 5-2 into a separate subprogram for input design purposes.

Varianice of Fixed-Point Estimated Parameters

The covariance -matrix for the fixed-point smoothed estimate is

shown in Section 5. 2 to be

SIY ) I f ) Fr (5.6)
where 3. is given by

;6-1 -* ; I - 1 (5.7)

L r

Since .he iocally iterated filter-smoother and fixed-point smoother

employ a priori information, o , it would seem that the above equations
could be employed for a final co,-ariance ,omni.t;,tion. However, the

a priori inf,-,rmafion for P in the case of parameter estimation is almost
0

always unavailable and is usually produced from the same data given; in

ether words, P is obtained after proceseing the given data. As such, it is

not a priori inicrmation ir: the true sense in that it is independent of the given

data. Rather, the P obtained through using the data should be regarded as

a means to start up the locally iterated filter-smoother. Consequently, it

is appropriate to comoute the covariance matrix ox the fixed-point esti-

inatea parameters in an independent way that does not utilize the a priori

informatior.

In deriving the fixed-point smoothing aiorithm in Section 5. Z, we

have assumed that v,• ,Y(Q•), i-.A/./ are jointly Gaussian. This implies that

both zo and -Yo IY(+I) are normally distributed. We have, therefore,
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_ . (' Y) (5.8)

and, because both z. and .Jo]Y(N) are Guassian,

£fl/,lYi Z, 2 = Ij,/jZ -=E('X. /Yf V))11#
9X'O Y (- (5.9)

Assu'rinig that the fixed-point smoother is an asymptotically efficient esti-

inator, then without use of a priori information, the covariance of the param-

eter estimate will approach the Cramer-Rao lower bound C9, , which is

given by

--2 {& / ;fI~i'(5. 10)

From equation (5.9) it is readily shown that

Equations (5. 6), (5. 7), and (5. 1la) are the desired recursive formulas for

computing the improvei covariance matrix of the fixed-point smoothed esti-

mate for parameters. It can be shown that, in the absence of process noise,

equation (5. hla) reduces to

S="(5. 1 b)
L

where
-- ;, -I i-f ' 0cj=

In the next three sections, detailed mathematical developments are

given for the locally iterated filter-smoother and fixed-point smoothing

algorithm, unknown forcing function computation: and the improved com-

putation for 'he variances of the estimated parameters. Readers who are

not interested in the mathematics can, without loss of con:inuity, skip these

sections and go directly to Section VI, in which the results of the numerical

experiments are presented.
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5.2 Derivation of locally Iterated Filter-Smoother and Fixed-Point

Smoothing Algorithm

In this section, a unified approach is taken to de;-ive the locally

iterated filter-smoother and fixed-point smoothing algorithm. For the

readers who are not interested in the detailed mathematics, this section

along with 5.3 and 5.4- may be skipped without loss of continuity in going

directly to Section VI. The material presetted ia this section is purposely

designed to be self-contained; the necessary mathematical preliminaries

are given in Appendix G. For the sake of convenience, the problem as

lormulated in Section II is restated here; however, for notational si-nplicity,

the subscript t a " in equation (3. 9) is dropped.

Statement of the Problem

Consider the nonlinear continuous system

N '(5. 12)

driven by zero mean white Gaussian noise, w4() , which can be characterized

by the difference equation

/(5. 13)

and discrete noisy measurements

q - h,- 4 (5. 14)

where q, (z,-1) denotes the solution, at time ei , to

given the initial condition it•-)= . The random vector sequences w.

and v, are white Gaussian with zero mean and covariance matrices

-j 0= I'M

the usual rules of calculus apply (see, for instance, Referenre 56)

"correlated noise is treated in Appendix I.
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The process noise sequence, W1 , in (5. 13) i3 a useful, although artificial,

method of accounting for dynamical modeling errors and unknown forcing

inputs. The choice of a normal distribution is for analytical simplicity.

The initial condition t4) to in (S. 13) is a Gaussian random variable with

mean •0 and covariance P, , i.e., 4:,) • N(to 'O). The problem is to

obtain best (efficient) estima tes for V, and w• , ; = ,2, ... , iV using the

nmeasured data Y(N) &/ 7 T r r.

Fixed-Point Smoothing and Locally Iterated Filter-Smoother Algorithnms

The problem stated above is a problem of fixed-point nonlinear

data smoothing for %, and fixed-interval smoothing for a, for which exact

solutions are not vet available. Our objective is to seek an approxLmate

solution to the above problem. Tu t~his end, we shall assume that ',V

are jointly normal and so are V, Y() ,and tj , Y(4-) for f /.1

Note that this assumption is true only if (5. 13) and (5. 14) are linear, thus,

our basic assumption is only an approximation. It is shown in Appendix G

that the conditional expectation E4¶JY() , jzo4-f, i are the efficient esti-

mators (unbiased and minimum variance) for 2, , - and Z(;) given

data V(0) . Using equations (G. 2l) and (G. 22) in Appendix G and noting

that Y(N) .(Y(6V-r7'r it is readily shown that

2ý (5. 16)

where

and the covariance matrixes P. P. - are defined by
S4 )' t.' }

(r

P. (5. 18)

~EI (~i'*)J 9~-(Y!~.~J (5. 19)
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where F is the expectation operation. Note that we have used in the above

expressions the fact that EI I-E.q]iY(&-,)} =0.

Before we proceed to obtain a suboptima! fixed-point smoothing

algorithm from (5. 16), we shall first use equation (5. 16) with J ,-1, k to

derive a locally iterated filter-smoother algorithm.

Locally Iterated Filter-Smoother Algorithm

A common approach is to employ the extended Kalman filter to per-

form the estimation for Y&. However, it is shown (Appendix H) that the

extended Kalman filter is a biased estimator. The bias is due to the -nulti-

plicative effect of nonlinearities in q9" and and the levels of noise pre-

sent in equation (5. 12). One may correct for system and measurement non-

linearities by including higher-order terms in the Taylor series expansion

about the reference trajectory (References 38 and 53). However, the

approach taken here is to use some local iteration algorithm based on the

extended Kalman filter in conjunction with the use o. one stage optimal

smoothing. The puxpose of the loczI iteration is to improve the reference

trajectory and thus the estimrec in the presence of nonlinearities. Indeed,

it can also be shown formally that the bias is reduced by the local iteration

(see Appendix H).

We now use (5. 16) to first derive the -)ca.Ily iterated filter-smoother.

in (5. 16 . EL., IV(X4q) is the one-stage optirnal smocthed estimate for z._
and E [ 1 is the optimal filtering estimate of . Their ccvariance

matrices are P and P ,,iye.) respectively. First, we shall ob-

tam-- the filtered estimate E f'Z I .(' To do this, we need E 1xkJYicE-O
i~ '~~J~ ,- and p- in (5. 16).

An equivalent version of this algorithm has previously been derived
and evaluated by Wishner (Reference 57).
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Mi Determination of E~Ykd

Consider the time interval 2.-t Z4L . Let us choose a noininal

trajectory Z7(f), which is the solution of (5. 15ý with initial condition Z(t,.,)=

To a first-order approximation,

E (5.20)

where •)k" (zL,) is the one step transition matrix along .

(ii) Determination of Etfylt -1)]

We linearize (5. 14) about x*A ."(t To a first..order approxi-

mation

4- 14 (5.22),-I'I

where

a (z )

Hence, since
E Y~f - t 0,

E{g1Yvi'- .h(z) "4 ( ,)(x,-,- ( 5s. 23)

(iii) Determination of P -,P .

Usir.g (5. I2), j5. 22), (5. 23), and (5. 18),

Linearizing q (-t) about % and using E()..,/.f we have:
g,.j,•,)-E- [q, (,, ,)j = ¢,,_ (47-)(•,.,-X,.,I,-,)

0 t f (5. 24)
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Hence, igain to first order,

Ei Y14 it (5. 26)

as surfng Ad- F.*.) Similar'y,

we have, therefore,

lhus, b-ased on tee chosen trajectory E••••l_ _•t with end

poits i' , 1' , the filtered estkmate • .•is

= ••-* 6L [ ,q'-i~4. 4• (4k,-,-9]

4- Vx -f)(5 0

and •iis given in (5. 28). From' tti.e second equation in (5. 16), the variance

of th~e estimate "•-.is

);~ . , r

go P -(5.231)

FI&re 5-5 shows the reference trajectory k( 46 , its end points
po ints ' ".t ,and the filtered estimate S.k/ bse
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Kalman filter which utilizes the reference trajectory with end points

and where

Wit,? this choice of reference trajt ctory it is readily seen that (5. 26), (5. 29),

and (5. 31) reduce to the extended Xalman filter:

114-

0 T

Pj (I (- IP 1 4 ,

We now proceed to find the one-stage smoothed estimate E,,.,1•t

using the same reference trajectory (t- A t ! , . Denote this esti-

mate by Y'k /4. From (5. 16)

A

"4-, (5. 33)

Foi.owing the same approach as above, it is easy to see that to a first-order

approximation

j*-, "•'•,- • (5. 34)

and thus

IF T

~ -%(5. 35)

or, equivalently,

"I -, ; , ,- ,,-, -, -, ( - .j , -, ) ., ,* - - [ ,, / : )

(5.36)

F 101

L



1

U

The smoothed estimate is shown in Figure 5-5. The covariance

matrix for -i is , from (5. 16):

fi ý P, -I *. 1W e e 5.37)

e are :.ow in a Dosition to discuss the procedure of the locally

iterated filter-smoother. First, before processing the data y. ,we choose
A Athe initial reference trajectory with end points .. , . . With

the choice of this reference trajectory, we obtain the filtered estimate -Alk-

by the extended Kalnan filter (Reference 18) and the smoothed estimate

by (5. 38),

the -Ii- I i,-,(-A N,0 q-0 L 4 J (-, T-f, 5.38)

wiv.ich is obtained from (5. 36) by replacing Y_ and -tý by and

respectively. Now, after the data .. is processed, the estimate
AA "and yl. should be more near the true trajectory. Thus, we

choose - and zk•j_ as the end points of the second trajectory asic-II k 1 ^ (f)
shown in Figure 5-6. Denote - by -k , I. We

then proceed to obtain the second set of estimates 1Y_ and - using

equations (5. 29), (5. 30), and (5. 36). In doing so, of course, %'_, and 7

are replaced by .e and Y I respectively. This procedure is con-

tinued for the t'ird set of estimates 'Y and and so on, until

the successive estimates of "It are "close enough". Experience has indi-

cated rapid convergence of the algorithm: rarely have more than two

ad-itional iterations been required.

The fixed-poiht smoothing algorithm is discussed next.

Fixed-Point Smoothing Algorithm

We are now in a position to derive the desired approximate fixed-

poin, smoothing algorithm. Once again from (5. 16)
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_ -o , •r(5.39)
IY~t P'X"IY( -O 1) 'PY.

where
p=*

Observe that the term P7_% 4 in (5. 39) is identical to that in the filter-
smoother case (5. 16). Thus, it is necessary to evaluate only the term Po-

in (5. 39).

As in the case of the locally iterated filter-srmoother. a proper
choice of reference trajectory is required for better linearization of Q
and hI. in (5. 12). It is logical to choose the final trajectory used in the
locally iterated filter-,ý'acother for each time interval t,,e tA 0_ OI.-'N.

Denote the final trajectory by ." and define

w. ^ etc.

Then, fork = 1,
x - (o, =Yo

"")0 "fO I4

The "gain" for fixed-point smoothing at 1 = ! can be readily obtained from

(5. 27) as

or, equivalently,

P,.
wbere
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For =
f

[ ' -E (

t~ ~~ " 7 r.a, ,jr '

Since

"fqi, t •,( (o- . ÷ Y',

we have

Fr Wj 0 Tlr7i

and

2Z 2 z 2

whe re

In general, for any * ,

-- 5.40)

where

Thus, we have the following suboptirmal fixed-point smoothing algorithmr

T q) (F) -r(5.41)
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From (5.41) we see that the fixed-point smoothed estimate is again computed

in a recursive manner using a combination of old estimates and new data.

The resicdual sequence is identical to qh it) .. w is the final

residual sequence in the locally iterated filter-smoother, and the fixed-

point smoothing gain is a function of the filter gain. The fixe.'--poit

smoothing algorithm (5.41) can therefore be easily mechanized to work in

conjunction with the locally iterated filter-smoother in an "on-line" fashion.

After all, the data Y(N) has been processed, we obtain the fixed-point
14

smoothed estimate . Using this estimate and the filtered estimates,

an estinmate of the unknown forcing term 1 can be made. The computational

algorithm is discussed in the next section.

5.3 Computations of the Unknown Forcing Function

From the results of the' fixed-point smoother, Z , the filtered

estimate X*Ij and the constraint equation of the systerm (5. 12), it is

relatively straightforward to derive an approxim.rate algorithm for estimation

of the unknown forcing term, 4, , in (5. 12). This estimate will be called

here. However, it is necessary to use the equation for the fixed-
A

interval smoother, •4• , defined but not derived above. A short deriva-

tion, using the results of the one-stage smoothed estimate, follows.

Using a well-known matrix identity, #A, in 5. 28) can be written

as

1v =:"(5.42)

where all symbols were defined pre-.. -Ay. Employing (5.42), (5. 29),
(5. 31), and (5. 36), and after lengthy algebraic manipulations, the one -stage
smoothed estimate may also be expressed by

A A P ~T 2 I A '

VifiI*4 /*I [/f_4 -~ (5. 43)

where the * and superscripts have been dropped fcr convenience.
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We shall now make use of (5.43) ii a sequential manner to obtain
A

!he fixed-interval smoother. Suppose tat we have already obtained 144'c
via (5.-43). It represents the best estimate we have concerning the state
at Y. - I given data up tv . Now, ccasider the smoothing problem of a

single-stage transition between the 'tate at -1 and i-L and reapply

-3.43). This yields,,:
-r A0t fi X T ^A

14 (5.44)-' ' • b, P P,1 2 [q

where and -s have replaced %.j and g4t respectively,

in (5. 43).

Therefore, the fixed-interval smoother becomes

" .,r -1 '
"•-,!, ~ ~ ~ ~ V 2s: /,a• 1!• a- (2P/- 4: /- •g• 5.45)

which is a backward recursion starting with the filter estimate 444,"

To obtain the estimate /At for the unknown forcing function

applied to the system at time t, we need the constraint equation for

(5.45). To find the constraint equation, let us consider (5. 12)

(5. 1Z)
-- " (Z.,) art (repeat)

Then: A

(5.46)

Now, as usual, expand q_ (•&-) about the final one stage smoothed esti-

mate . (note that the superscript has been dropped), which yields:

Substitutiug the above equation into (5.46), we have the desired constraint

equation for the fixed-interval smoothing:
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A (A A* A (S. 47a)

or

Making use of (5.45), (5. 3U), and (5.417b), it can readily be shown that

(5. 48)

Notice that the form of (5.48) is identical to that of the linear case (Reference

30). However, it should be pointed out that P* ! and q.

(5.48) are the final values in the locally iterated -xtended Kalman ficer.
A

Notice also that if " is available for all - , 65.48) will suffice to esti-

mate the unknown forcing function. However, at the completion oi the fixed-

point smoothing we have only Vo!N , and the constraint equation (5.47b)

and (5.48) must be reused. We have, therefore,

" " ) (5. 49)

Once aga(5, 4)inyg (5.30) we have

Then (5. 49) finally becomes

where 
11( 

5

Not that the ain be a(5. 50b)

Note that the gain matrix can be precomputed and stored along wit*h kIt

in the locally iterated filter-smoothing pass.
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Equations (5. 5C) and (5. 47a) form a pair of difference equation-

'A 
A

which are recursively solved "or , , starting with zij.

5. 4 Improved Covariance Computation

Variances for Fixed-Point Estimated Parameters

The covariance matrix for th': ':.ied-point smoothed estimate can be

readily obtained from equations (5. 39) a! d (5. 40) as:

PY I YN) XCYc-t N M&I . 15.51)

where EN is given by the second equation of (5.41).

Since the locally iterated filter-smoother and fixed-point srnoowber

employ a priori iniormation, Po , it would seem that equation (5. 51) could

be employed for a final covariance compu'ation. However, as will b! dis-

c.:ssed in the next section, the a priori information for P 'n the case of

parameter estimation is almost always unavailable and is usually pro iuced

from the same given data; in other words, P is obtained after processing

the given data. As f-ch, it is not a priori information in the true sense in

that it is independent of the given data. Rather, the P obtained through

using the data should be regarded as a meats to start up the iocally iterateJ

filter-smoother. Consequently, it is appropriate to compute the covariance

rmatrix of the fixed-point estimated parameters in an independent way that

does not utilize the a priori information.

Recall that in deriving the fixed-point smoothing algorithrxi we have

assumed that %0 , Y(*)), IK kti N are jointly Gaussian. This implies that
both Y;, and %:, JY!'•) are nornally distributed. We hae, therefore,

(I*JY(NV)) Xc (V(N,)); )(5.) (5 sZ)

and, becau,-,( both Y and o )YvtJ) are Gaussian,
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)]----#x, - E(;Y)II
1 (5.53)

Assuming that the fixed-point smoother is an asymptotically efficient esti-

n-mator, then without tnse of the a priori indormation, the covariance of the

"parameter estinate will approach the Cramer-Rao lower bound C',v

"(Reference 19) which is given by

e (554

From equation (5.53), it is readily shown that

aC, = o (5.55)

Equations (5.55), (5.51) and the second equation of (5.41) are the desired

recursive formulae for computing the improved covariance matrix of the

fixed-point smoothed estimate for parameters. It can be shown that with

= 0, i.e., 0 , equation (5. 55) reduces to

r•. M ,r(J- ; ;--fJ. £ £ (5.56)

where-- |)
• '= " = •t,s-• *-I =.

Start-Up ProcedurF. for Locally Iterated Filter Smoother

When empioying the equations-of -motion estimator as the initial

start-up procedure ior the Kalman filter on computer generated data (see

Section VI), it has been observed tnat the variances of the parameter esti-

mates, which are used as the diagonal elements for P. competed fo7 this

estimator were not consistent with the parameter estimates. In most cases,

the variances were much too small to indicate the accuracy of the param-

eters estimated. However this was expected, since the eqnations-of-

mctioro estimator is a -imple least squares technique (equation errcr method)
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with .,nity weighting; and we have shown in Section IlF twat tnib estimator

gives ,ibymptotically biased estimate., when measurement errors are present.

We recall also that, in Section 3. 1, the variances of the parameter estimates

were computed based on the classical linear regression theory with non-

stochastic regressor. Since in actuality the regressor is stochastic, the

variances computed in the equations-of-motion method are only an approxi-

;ation.

From experience using computer generated data, where the noisL

levels are known, best results were obtained by increasing the computed

variances by a factor of from 1 to 10 ecually for all the parameters. This

increase was necessary to account for the bias of the initial parameter esti-

mates by forcing the fiiter to place less weight on these estimates. Although

the variance of each individual parameter could be increased by different

factors, the computer time required to obtain the best combination of factors

by experimentation would be formidable. Further, the best factor to use in

each particular situation is not known since it is strongly dependent on the

control input and noise levels present. However, in view of the erroneous

variance computation, it is doubtful that equally increasing the variances

with the same factor is appropriate. It seems more appropriate, therefore,

to first more correctly compute the variances of the estimated parameters

and then increase them equally to keep their magnitudes in the proper pro-

portion.

Thus, a better scheme to start up the Kalman filter from initial

parameter estimates is to calculate P for the parameters by aa independent

technique. Assuming that the initial parameter estimates are produced from

an efficient estimator, then the covariance matrix, P , for the initial

parameter estimates can be shown to approach the Cramer-Rao (CR) .

bound. Thus, equati-)n (5. 56) can be employed in the calculation of the

improved start-up covariance P. . Here, of course, the matrices i'i-

and !" are evaluated along the trajectory using the initial estimated param-

eters, i.e.,
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(5. 57)
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SECTION VI

N,,ERIC-t~r r '• TPTTC ATTION OF ADVANCED TECHNIQUES

To prove the ccncepts and to verify the accuracy of the developed

ident:,fication techniques, computer-generated data were used. In this sec-

tion we 3hall describe the generation of th" data that were used. We will

then discuss the results of applying the technique to these data, and indicate

the effects of using acceleration measurements, the effects of reusing the

data, the effects of the multi-correction and fixed-point smoothing, the

effects of a different start-up procedure, and finally the effe'ts of the noise

covariances P and Q . In lieu of exhaustive Monte Carlo simulation to

fully evaluate the performance of the technique, which would be very costly

for this identification problem, the criteria of performance used here are:

I) the accuracy of the parameters estimated, and Z) transient response

matching to measured data.

6. 1 Data Generation

Appendix D describes the computer-generated data employing the

linearized equations of rnoion and Gaussian noise sequences. The flight

conditions were chosen to be at a fixed-duct incidence of 300, and the

resulting data were designated as 1A, IB, &C, and ID, depending on the

noise levels and on whether or not process noise was present, Since the

equations of motion that best describe the X-ZZA aircraft are nonlinear as

discussed in Section I1, more data were subsequently generated to study in

greater depth the effects of nonlinearities and a larger number of param-

eters on the accuracy of the developed technique. Again, as in the linear

case, independent white Gaussian random noise sequences with zero mean

and appropriate variances were added to the outputs of the state variables
and ihe accelerations, simulating measurement noise. In addition, the
same type of noise sequences was added to the vehicle representation in the

equations of motion to simulate process noise.

Data 2A-1, 2C-1, and ZD-1, as shown in Table 6 -la, were
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generated using an input (single pulse) in the longitudinal stick defiection

alone. Again, the flight conditions were chosen at the duct incidence of 30".

I, The fl~ght conditions, noise levels, and the true parameters used for data

generation are all shown in Table 6-la. in Table 6-la, we also see the char-

acteristics of the set of data ZA-Z through ZD-2 using a better conditioned

Snput (multi-pulses) in the longitudinal stick deflection.

To aid in th,,' evaluation of the improved techniques, and particularly

the improved start-up procedure, and to serve as a basis for application of

the ilentification technique to flight test data at FOP (Fixed-Operating--Point),

two additional sets of computer-generated data were generated. These cases,

called 3C-1 and 3D-1, are shown in Table 6-lb, and were generated without

and with process noise, respectively. The noise level used is also shown in

the table. The model in etch case employed linear aerodynamics with

slightly modified "global" values at I = 45. However, in these cases,

process noise was considered to represent equation error and not gust effects

as in the previous cases (ZA-l through ZD-I, 2C-Z and ZD-2 above). Thus,

the process noise effectiveness matrix, i, in (2. 15), is simply 9, =

A realistic longitudinal stick inpit, taken from Flight 2F198 of the MPE II

data (Reference 58) was used. Detailed descriptions of the MPE II data will

he given in Section VII.

The measurement noise levels used were obtained by observing the

oscillograph records of the MPE II data. As will be explained in Section VII,

these levels are very high. In addition, the standard deviation of the process

noise was chosen as approximately 10% of the RMS (root mean square) value

of the acceleration measurements, thus causing a very high value for aj,"

In all cases, the data were generated on the computer employing a

fourth-order Runge-Kutta integration technique with a fixed step size ( & )
of 0.05 seconds. For derivative evaluations between data points. lirnear

interpolatio:- wa, ised for the control inputs, but the process noise inputs,

r('f) , were held constant. Since bt is sufficiently small, the process

noise can effectively be interpreted as forcing the dynamical equations
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through a sample and hold network, the output of which is a white Gaussian

sequence whose covariance is approximately reduced by a factor of At from

the covariance of the input noise. Following this interpretation, the process

noise standard deviations given in Table 6-1 are those prior to sampling and

holding. Due to the discrete formulation of the identification algorithrr., no

ambiguity exists for the measurement error. Refer to Appendix D for a more

detailed explanation.

As a representative case, and to observe the effects of the defined

level of process noise on the :-neasured responses, data generated for 3C- 1

and 3D-I are shown in Figures 6-1 and 6-a, respectively. Responses for

S , W, and q (labeled as it" , CC', and q' ), although not used as mea-

surement sources, are shown along with the simulated measurements -

0, a., u" , , ,and .

6. a Effects of Using Acceleration Measurements

Longitudinal acceleration measurements ) , fl2 , and n contain

additional information concerning the excitation and motions ol the aircraft.
The parameters identified using the acceleration measurements in addition

to the state variable measurements would therefore be expected to be more

accurate than those identified using only the state variable measurements.

Table 6-a s.hows a comparison of the results obtained fron. the

extended Kalman filter with and without acceleration measurements on data
case 2D-2. The initial parameter estimates were from the equations-of-

rotion estimator, and the initial variances ci these estimates (which were

calculated from the equations-of- notion estimator using (3. 3d) ) were

multiplied by a factor of 10 to initialize the Kalman filter. In both identifica-

tion runs on data 2D-2 with and without acceleration measurements, the
initial conditions for the aircraft states ( 1, q , 4 , and (r) were set

equal to the first point in the measurements, and their initial covariances
were set equal to the measurement noise present on these sensors. (Note:
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this procedure was followed for all identification .ans in this section.)

V• • Notice that the parameter estimates are, in general, clos,.r to the correct

values for the runs with acceleration measurements than for those without.

The improvement in accuracy is not draftic, however, which perhaps i. a

result of conditioned input and the fact that the total noise level prese:at on

the acceleration measurements (which includes the contribution added by the

process noise) is large relative to the noise level in the other state mea-

surements.

Unfortunately, introduc.'ng acceleration measurements into the

extended Kalman filter increases the computational load by a large amount,

because the size of the matrix required for inversion at each data point is

equal to the number of time histories used and also because the measure-

ments now become nonlinear' functions of the aircraft state and parameters.

Using acceleration mea.-arements in addition to Y •ate variable measure-

ments, the number of time histories increases from 4 to 7, which requires,

among other things, invertin , 7 x 7 matrix instead of a 4 x 4 matrix at

each data point. Proper scaling of the variables and parameters is also

required to avoid ill-conditioned numerical situations (large differences in

order of magnitude). It was found that the best combination of units was

ft/secZ for n.z and n and degrees for all angular units.

The transient responses computed from these two sets of identified

parameters (Table 6-2) matched very well with the measurements. These

responses are shown in Figure 6-3 for the caese in which acceleration mea-

surements were used; those of cases without acceleration measurements

were essentially identical. Due to the very hEh signal to noise ratio

(which, incidentally, is very unrealistic and ccnr.ot be obtained in flight

because of the large excursions af the aircraft motion), the transient re-

sponses computed using the initial estimated parameters (from the equations-

of-motion method) also match very well.
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6. 3 Effects of Reusing Data

Since the parametei identification of a VTOL aircraft is a post-

flight data analysis probieni, it is possible, of course, to reuse +he same

flight data. Further, since tbe extended Kalman filter is a biased estimator

for parameter identification problems (see Appendix H), it is desirable to

reuse the same data all over to reduce the bias of the estimate. In our early

development of identification techniques employing the extended Kalman

filter, we were therefore forced to utilize a recycling scheme to improve

the para.n.eter estimates. This scheme essentially considered the first pass

through the extended Kalman filter as the second initial estimator (the

equations-of--motion method being the first initial estimator) for the second

pass of the extended Kaiman filter, which then refiltered the data in a forward

fashion ( to to tj ). An alternate way of reusing the data is backward

filtering. Again, we may consider the forward pass as the second initial
-stimator for the second extended Kalrman filter (the backward filter), which

filters the data from t to t, . These two schemes of repeatedly using the

extended Kalman filter are shown in Figure 5-1. It is important to point

out that both second filters are extended Kalman filters, and, therefore, the

second filter is again a biased estimator just as the first filter. As we have

discussed, the locally iterated filter-sn-ioc-ther subsequently developed cir-

cumvents this difficulty of needing to reuse the data.

Table 6-3 shows a comparison of typical computer runs of the two

schemes of reusing the data, both using acceleration measurements. The

data used are multi-puises in ws , with both moderate process and nea-

surement noise (data ZD-2). From this table, it can be seen that the second

filter, either forward or backward, does not substantially improve the

parameter estimates. This fact may be partly attributable to the fact that.

the initial estimat3r has already given a good parameter estimate for this

type of input.
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b.4 Effe'cts of Multi-Corrections - The Use of Locally Iterated

Filter-Smoolther

Thble 6-4a shows a comparison of the parameter estimates re-

sulting from the above schemes of reusing the data in the extended Kalman

filter with the results of a simple version of the locally iterated (or multi-

corrected) extended Kalman filter on data case 2D-Z. In these computer

runs, as before, acceleration measurements were utilized. The last column

in Table 6-4a is case F (), in which a simplified multi-corrector + (no

outimal one-stage smoothing, only one additional local iteration) was used.

From Table 6 -4a we see that the parameter estimates are slightly more

accurate than the two schemes of reusing the data. From Tables 6-3 and
6 -4a, a comparison can also be made between this simple version, F" (N),

and the extended Kalman filter, F'10 , with no recycling. Again, the dii-

ferences are very small, indicating the initial parameter estimates are

accurate enough to require little or no improvement in the reference tra-

jectory from the additional correction. Again, all transient responses are

equivalent to those in Figure 6-3.

tThe effects of the multi-correction can be seen more clearly from

Table 6-4b. The data used here are not well-conditioned (single pulse in 8S.

with moderate measurement noise). Further, because of the fact that the

data have no process noise added (case 2C-1), the simplified version of

multi-correction is identical to a better version which incorporates optimal

one-stage smoothing. From this table it is seen that the results of two

additional local iterations improve significantly the estimate of the param-

eters. It can also be seen that improvements can be made with different

choices of P, , the initial covariance matrix of the estimated parameters.

Typical transient responses are shown in Figure 6-4.

+ This simplified version of multi-correction was programmed for the
case where process noise was absent. One-stage smoothing then be-
comes backward prediction, which is simply an integration of the
dynamical equ"'ions backward one data point from the filtered estimate.



The same comparison is made in Table 6-4c for data case -D- 1

employing the correction with one-stage smoothing. As shown, no improve-

ment is obtained for this data sei; however, it is again noted that the param-

eter estimates are very sensitive to Po . Transient responses, represen-

tative of all three sets of parameter estimates, are giv-n in Figure 6-5.

Results of the fixed-point smoothing algorithms working in conjutr.ction with

the locally iterated filter will be discutsed below.

Table 6-5 shows the effects of multi-correction for data case

3D- 1. The acceleration measurermnnts were uz.!d and the multi-corrector

used was the one with optimal one-stage smoothing. The results show that

one add.tional correction improves the paramete:7 estimates. fransient

response matching 'o data case 3D-1 is shown ia Figure 6-6. The improve-

ment in response matching over the time histories computed using the
parameters estimated from the equations -of-motion method is clarly indi-

cated in this figure.

From Tables 6-4b and 6-4c, it is evident tht the parameter esti-

mates using the locally iterated filter-smoother are very sensitive to the

choice of the initial covariance matrix P . Evaluation of a bL-.ter choice

of R0 as discussed in Section 5.4 is given in the next subsection.

6.5 Effects of Different Start-Up Procedures

From the preceding discussions and tables associated with eval-

uating the locally iterate.-d filter, it is apparent that the final parameter esti-

trrmtes are very sensitive to the initial covariance matrix P. . This fact

cat, be seen in Table 6-4b for data case ZC-I, where thiee sets of par-im-

eter estinmates are obtained from the locally iterated filter by increzsing

eria.ly %'i the variances of the initial parameter estimates (from the

eqLazions-of-motion estimator) by factors of 1, 10 and 100. The results

obtained from using a factor of 10 are better in the X and Z derivatiwvcs

than those from using 1, but are not as good in the momert derivatives.

Clearly, no uniformly better set of parameters is obtained by increasing
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all of the initial variances computed from (3-3d) by the same factor
.0 Furthermore, the proper amount of increase for each parameter is dependent

on the control input and noise levels present. These numerical results con-

firm the desirability of employing the proposed start-up procedure discussed

ia Section 5.4.

Since the CR lower bound given in equation (5.57) is computed in

the quasilinearization identification algorithm, which has been previously

evaluated (see Section 3. 2), this algorithm was used to evaluate the pro-

posed new start-up procedure on data 3C-1 and 3D-I, which have a smaller

number of parameters than data ZC-I and 2D-I. A comparison is made in

Table 6-6a between Lr (from equations-of-motion estimator), er.;, (CR

lower bound standard deviation), and the absolute estimation error for data

3C-1 and 3D-1. Here the absolute estimation error is the abeolute dif-

ference between the tree parameter value and the parameter estimate from

the initial estimator. The CR bound was computed in the quasilinearization

program and increased by a factor of 20. As is evident, the absolute esti-

mation error is generally within the 2r,, value, which demonstrates that

this method of computing the initial variances gives a better indication of
the initial parameter estimate quality than does the equations -of-rnoti,'n

estimator.

Results presented in Table 6-6b are for data case 3D-1. Here

the lower bound, CR, was computed as given by (5.57). Included in the

table is a comparison between the extended Kalran filter (F, ) and the

locally iterated filter ($, (f) ) with one iteration, starting with P for the

parameters from the equations-of-motion estimates. This comparison has

already been discussed and shown in Table 6-5 and thas wifl not be dwelled

upon further.

*The same situation can be seen from Table 6-4c, which utilized
data set ZD-1, and Table 6-5, which utilized data set 3D-l.
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Also shown are the results from the fixed, point smoothing algorithm,

for both the initial aircraft states -And the parameters employing the improved

start-up procedure witib a factor of 20. The fixed-point smoother was working

in conjunction with the locally iterated filte!r using one iteration. A final

variance computation for these estimates its discussed in Section 5.4 and

computed by (5. 57),is given by 6r•-cT (standard deviation).

The results are very impressive. Comparing the smoothed param-

eter estimate with the locally iterated filter, we see a substantial improve-

ment. The filtered parameter estimates are shown as a function of time in

Figure 6-7. Traneient response matching to measured data is equivalent to

the case in Figure 6-6. The final variance computation for these estimates

also agrees very well with the error in the estimates. In most cases, the

magnitude of the absolute estimation error is within the 26 value obtained

from the final variance computation.

Improved accuracy may be possible by equally increasing the

initial variances from the CR computation by a different factor to form P .

The best factor to use could be obtained by additional experimentation;

however, time constraints did not permit further development of the start-up

procedure.

6.6 Fixed-Point Smoothing Results

The fixed-point smoothing algorithm developed in Section 5.2 has

been applied to data cases 2D-I and 3D-1. The results, as indicated on

Tables 6-4b and 6 -6c, have showr that the smoothed parameter estimates

and filtered parameter estimates are approximately the same. A close

examination reveals that this weak "smoothability" of the parameters is at-

tributable to the low ratio of process noise to measurement noise considered

in these cases. An augmented state is considered smoothable if smoothing

* This comparison can be made because the parameters are only

slightly smoothable (see next section).
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of the data yields an estimate of the state which is different from that which

would be obtained by integrating the final filtered state estimate (at tj. )
backward in time (Reference 41). For the parameter identification problem,

the parameters to be identified are considered constant states, and therefore

the filtered and smoothed parameter estimates will be equal only if the param-

eters are not smoothable.

From the equations for the fixed-point smoothing algorithm or the

fixed-interval smoc-thing algorithm, which are given in Sections 5. 2 and 5. 3,

and the form of the state transition matrix between data points, it can be

shown that the improvcment which smoothing gives over filtering is strongly

dependent upon the ratio of the levels of process noise to measurement noise

present although the proof of this observation is by no means trivial. As an

intuitive exa-nple, however, let us look at the relative magnitudes of the

process noise to measurement noise present in data set 3D-1. Since the

measurement system is discrete whereas the dynamics are continuous, the

comparison is properly made by comparing the magnitude of the elements of

Q, for a discrete process noise sequence, to the elements of R, the mea-

surement noise covariance matrix which includes the effects of process noise

in the acceleration measurements.

From Table 6-1b, we have

, .16 0 0 0
0 0 0M o

0 0 0
S~0 0.01 C

62 0 0 0 tO.Z4

L 0

4 #•;--4 0 '3 0

0 0 00C 0 Z.,YXIC"s 0S 0 O~

Lo
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and

4.64 fioz- 0
8.1 X fOS= 4 4 0 86.76 t*o

0 1593
0 12.83

545

Judging from the magnitude of the elements of R and Q. then, the pararn-
eters are expected to be only slightly smoothable for doa' case 3D-1; as
confirmed by numerical results. The same situation applies for data case
ZD-I, except here the analysis is more complicated because the process

noise is not stationary.

6.7 Residual Consistency Test

An essential feature of an identification technique is to be able to
predict, with reasonable confidence, the accuracy of the estimated param.-
eters. If more than one set of parameter estimates are available, either
from the same measurement data or different measurement data with dif-
ferent control inputs, then a judgment is required to determine which param-
eter set is the most accurate, or which combination of these parameter sets
would give !.he most accurate set.

As a means oi evaluating the accuracy of the estimates, transient

response matching to measured data and an improved final covariance com-
putation for the parameter estimates have been employed. Also, an improved
star.-up procedure for calculating P. has been proposed in order to obtain
more accurate parameter estimates. This start-up procedure has had
limited evaluation on computer generated data where the measurement noise

and process noise levels are known,
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However, when using the locally iterated filter and fixed-smoothing

technique on actual flight data, the actual values of R and Q to use in the

algorithm must be determined by engineering judgment. R can usually be

obtained readily from the measured data but Q is not as easily chosen.

Since the improved start-up procedure, the final covariance computation and,

of course, the final parameter estimates - either indirectly through the com-

putation of PO or the sensitivity of the estimates to R and Q (see Appendix

IK) - depend upon the selected values for R and 0, a performance measure

to aid in the selection of these matrices is very important.

A measure of the identification technique performance can be made

by performing statistical tests on the predicted measurement residuals

(innovation sequences), which are the differences between the actual measure-

ments and predicted measurements during the filter operation. These

residuals are defined as - in Section 5.2 for the locally iterated filter.

From equations (5. 17), (5. 27), and (5. 29), we have

rh 0

Thus, if the assumed noise covariances ( R and Q 1 and dynam-

ical model are fairly accurate, these residuals should be small, random,

zero mean and should possess statistical properties consistent witn their

calculated statistics, P- g . Although the residual sequence provides

a convenient way of adaptively estimating Q and R as filtering proceeds

(Reference 31), the approach taken here is to use them to provide an indicator

for determining if the R and Q were set properly. If not, R and Q can

be readjusted and another identification run made.
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TABLE 6 -ia (con't.)

SComputer-Genf.rated Data Characteristics for
Data 2A-1 Through 2D-I and ZA-2 Through 2D-2

Flight Conditions

X =300

U, 130 fps r 5. 362 fps

1 =i7.26. qO 0

-. 6 37 in.

G. W. 14, 364 lb Altitude: Sea Level STD

Control Inujts

1. 1.0
Time (Sec)

0IL 5 100 5 10
ES 0

-1. 0 -1.0

-2.0

-3. o0
2-A-I 2-A-2
2-B-I 2-B..
2-C-1 2-C-2
2-I2-D-1



TAbýE 6-lb

Computer-Generated Data Characteristics for

Data 3C-1 (Measurement Noise Only) and

3D-i (Both Process and Measurement Noise)

Noise Levels

MEASUREMENT NOISE PROC',SS NOISE
STANDARD I

SS DEVIATiN NOISE VALUE

.22 dcg/sec _ _ 4 deg/sec2

- - U .09deg I .1 ft/sec
2

u 2.6 ft/sec I_ _ 3.2ftIsec

r _._15 deg
•]z ! .012g

__ .Olý
S .05g

2. 3 deg/sec
ar 1. 0 ft/sec

M Measurement Nois, is any random fluctations and/or uncertainty
in a measurement output (white or correlated).

Process noise is used here to approximate unknown driving forces
and to account for inaccuracy in modeling the dynamics of the
aircraft.

TRUE PARAMETERS

Pi.rameter It pA NIU " 4V *I8

XValue 0. 1 -.036 -006 -S.0 50 .0+312861 ,0675 3.0 .127 -.430 .90 -180

Perturbed, Radians
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I TABLE 6-2

Kalman Filter Estimates With and Without

Acceleration Measurements

I:. Data 2D-2: Multi-Step 6' With Process Noise
Parameter True Value With Without

Equations of Accelerations I Accelerations
Motion F iO F 1 0

.50518 .30828 .40586 .39796
S) .003 8 .000884 -.000589 -.000391

\1 -6.°2 x 10-6 -2.467 x 10-5 -. 00001961 -2.0057 x 10-5

Al X) .001747 -. 00271 -. 095-.003088

a--5.53 x 10 -4. 97x 10- -. 00004714 *-4. 64x 10-
S -. 4 97 -. 5924 -. 57211 -. 58733

Su -. 00103 4.b84 x 10 -. 000197 -. 0000203

.3275 .33012 .31575 .32378

__ __ __ _ .00'.167 .001131 .001273 .'01218

( 18.30 I17. 899 18.427 18. 340

U -0'7-087Z -.09353 1 -.09466

KU -. 0003 ~ -000306 I-.0002976 I-. 000268

fI~ .2211 .20523 1.21955 .17575

(; 001587 -. 001455 001560 001185

1 'I -. 778 ... 4563 -. 71386 -. 78528

a' (itI .0184 .01604 .01841 .01843

( -32.17 -31.14 -37.2157 -32.78

JA .910 .9081 J1.0336 .9451
S-.007 -. 007008 -. 097664 -. 00722

(1) -. 2939 -. 36993 I-.36,0 -. 3457

It- ] -. 0028-1 -. 002316 --. 002302 -. 00252

35 0V 1.2589 '-1.9496 -1.0546

I_1 . 0 6 6 7, .023506 .031203 .02467

Perturbed laiue; momerit derivatuves in rad/sec'"
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TABLE 6-4c

EFFECTS OF MULTI-CORRECTION

Data 21)- 1 (i) Pulse Ses
(ii) Process and Measurement Noise
(iii) With Accel. Meas.

i I EXIENDED MIULTI-CORRECTION *

T EQUATIONS KAL.1AN (TWVO ADDITIONAL CORRECTIONS)
PARAMETER VALUE OF

MT ION F1 F1 (2) F1 0 (2)

"f 28.9 -.- 37.28 27.259 23.415 106.43

•K, -_-.176 1.126 .11753 .1909 -1.254

LI../_- -. 000355 -. 00647 -. 002a7 -. 00278 .00317
- - -. 100 ,610 - .09351 -. 0451 -. 833

0J -. 00317 -. 0102 -. 00438 -. 0051 .00249

S I./- -. ~97 I -1.256 -. 85188 -. 673 -3.01

Ft]__ -. 00103 .0077 .003155 .0017 .0202

18.7 -4).3 -33.287 -35.9 25.79

U L .0669 .521 .4598 .484 .0272

18.3 -18.88 -5.671 -9.36 56.25
X / -. 0917 .4752 .2408 .328 -. 626

_ Lad -. 0003 -. 0025 -. 0015 -. 0019 .0015

Ij] .221 .689 .447 .516 -. 088

-. 00159 -. 0052 -. 0032 -. 0039 .0044

F-.778 -28.14 7.115 -3.72 -36.9

LO 1 .0184 T .2312 -. 0369 .0463 .314

-32.2 I il.71 52 .$ 14  2.819 -11.99

1 .910 .477 .6301 .63 .9295

-. 007 -. 0064 -.007 - 0072 -. 0089

-. 294 -. 5119 -. 6462 -. 6221 -. 673

J -. 002 8 7  .00065 .00032 .00011 .00068

-,, ' l-3 5 1 - x 5"0 .6 - 9 9 .5 9 - 10 S .4 - 8 2 . 16

____ •.0167 1.19 : .812 .863__ .7286
*Smoot!.cd pal imeter estimates are approximately the same.
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TABLE 6-7

Sensitivity of Parameter Estimates

to Variations In Q

Data: 3D- I

Parameter True Value Initial Parameter Estimates
- Perturbed Parameter Locally Iterated Filter

(deg) P5 - Start-Up-
True T True R
R kQ 4 Q

M° 0.0 -. 5202 -. 2042 -. 225

Al O -2.06 -. 6683 -1.724 - I. 67

MO, -. 369 .5153 -. 1774 -. 1276
M -5.0 -4. 368 -5. 098 -5. 086

M 28.65 23.39 28.64 28.49

.2861 .2907 .346 .352
XO- 1.9 -. 0566 -. 1547 -. 1548

Xar -. 0675 .0489 -. 0438 -. 0414

V 3.0 2.826 3.048 3.053

j 32. 199 -33.01 -33.03 -33.03
11 -. 180 .0257 .-. 125 -. 0447

-. 413 -. 3290 -. 495 -. 427

.90 -1.011 -. 524 -. 5397

Parameter Variances from C R lower bound
multiplied equally by 20
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SECTION VI1

APPLICATION OF ADVANCED TECHNIQUES TO EXPERIMENTAL DATA

7.1 Application to Princetor Data

The Princeton Dynamic lMfodel 'I rack (PDMT) of Princeton University

I ~is a facility designed expressly for the dynamic testing of scaled, powered

V/STOL models in and near hovering flight. The design of the test apparatus
is such that the data generated should not be directly interpreted via conven-

tional airplane/helicopter rigid body equations of motion; modifications must

be incorporated in the equations to account for the apparatus. In order to

ensure a familiarity with the differences between PDMT test data and full-

scale flight data, we shall first review briefly the test apparatus at the

PDMT and the type of data that this generates. We will then discuss the

modifications of the identification programs necessary to analyze the PDMT

data. Finally, ihe analysis of the data will be presented.

7.1.1 Test Apparatus and Coordinate Transformation

A full description of the PDMT is given in Reference 59; for our

purposes, a summary will suffice. The PDMT consists of a 750-foot

monorail track enclosed within a 30-foot by 30-foot building. A servo-driven

carriage rides this track; for dynamic testing in the plane of sy-imetry

(longitudinal degrees of freedom), the carriage incorporates a boom which

allows * 5 feet of vertical motion relative to the track. A powered,

dynamically scaled model is attached to the boom by horizontal and vertical

error links; relative motion of the model with respect to the boom is mea-

sured by the links and used to command the carriage to follow horizontal

motion, and the vertical boom to follow vertical motion. The model is

attached to the error links through a pivot about which it is free to rotate

in the plane of symmetry. The error-link commands, therefore, allow the

pivot point to move such that the model flies "free" -- its motion is not

mechanically constrained. Linear velocities and accelerations, parallel
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and perpendicular to the track, are measured, as are angular position, rate,

and acceleration at the pivot point. The measured quantities are telemetered

and recorded in analog form; an analog-digital converter then records them

in digital form (along with some scaling), and CAL received them in this

form.

The CAL compater programs for V/STOL identification have been

written to be compatible with flight test data, and the state variables are

therefore written with respect to a body axis system with the origin at the

center of gravity. Since the PDMT data are measured with respect to a

space-fixed, or inertial, axis system at the pivot, they must be transformed

to body axis variables.

The transformation is a straightforward translation and rotation

(see Figure 7-i), and the result- are:

es e5

at 41 S & as9.3- ar sin es + - ~e-9

where the subscripts S and 8 are for inertial and body axis systems
respectively, and • and (XC9 - t*) denote the vertical and horizontal

dist:tnces, respectively, between the pivot point and c.g. (See

Figure 7-1).
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7. 1. 2 Equations of Motion for PDMT Quad Duct Test Model

In addition to the data transformations necessary to adapt the PDMT

measurements to CAL identification programs, the equations of motion
employed in these programs must themselves be modified to account for a

difference between 4he model dynamics and those from a full-scale flight

test which arises from the effect of the error linkages. A schematic sketch
is shown in Figure 7-2; from this may be seen the essential fact that a

dynamic test on the PDMT involves three masses:

(1) The quad model itself (M) which is free to rotate about

the pivot and translate horizontally and vertically.

(2) The vertical error link ( My ), which may translate

horizontally and vertically in the inertial reference

frame but which does not rotate.

(3) The horizontal error link (Mh ), which may translate

only horizontally in the inertial reference frame, and

which does not rotate.

i As we have explained, these links provide the position error signals of the

model motion, and are carried by the model; although aerodynamic forces

on theru1 may generally be neglected, their ine:'tial effects should be in-

cluded. In essence, the 'reference masses" which are accelerated by

external forces are different in horizontal. vertical, and rotational motions:

Horizontal M÷M ÷A~h

Verticak M A1•,

"Rotationak M (or r )

The full development of of the equations of motion, under only the

assumption that c. g. position and I, may be considered constant, is given

in Appendix L; the resulting, nonlinear equations, in a body axis system,

are summarized below:

155



IR

9+Xsk hOrJ605.2 INS;/7 ZosZ'1 Xaen,, (7. Za)

- (0) SW 0 C-05G

=0

Ff~ -u If.., 9 1 )[

L

- C, [Cope *(ý)Cr 5 09]]q2 + L0 esn] Zqe, (7. Zb)

=0

Noe:~and Xag, ,v are the aerodynamiAc forces along the body

axes divided by M + &'V

1,1(X -r) 2[m, t;n 0 + Mj + ,¶ Cos 60 md

-Z~fh (Kc -r),F,,os 0 sing]M (x9- r) s;n 0 Zc~esol

~ (Xqrcoezcor1 (7. 2c)
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where:
M#* Al1,

M. MV1 + Al,,

M÷V

S÷ Alvh
•,Mstvl 1  '

For the quad model, the values of the above parameters are:

M = 47.4 l1b 6' = 0.90

Mv = 4.1 Ib =0.072

SMh =5.61b • ±0.1

These equations for the model are considerably more complex than

those for the full-scale machine. The effect of the error links and the c. g.

offset have introduced additional functions of the usual state variables into

the equations, and have also added functions of q . Although these changes

could be implemented into the CAL cornputer programs, it would be pre-

ferable to employ an existing program. With this in mind, some simplifications

are made. Since the c. g. offset, .1 = 0, at the midpoint of the duct angle

range ( X = 60"), it is reasonable to consider the largest possible value these

terms could have and compare their orders of magnitude with the other terms

in the equation. Based on known geometric characteristics of the PDMT quad

model (References 60 and 61), the maximum possible values of c.g. offset

may be found to be:

S(Xc- f),w = 0. 03 feet

.0= .05 feet
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(It should be noted that these values occur at different values oi 1, , but for

order-of-nmgnitude estimations we use the r-iaximum values regardless of

this discrepancy.) Using these values, and limiting pitch angle to

< < < 30%, it was found that the maximum values of the coupling terms

in the force equations are:

Horizontal force: q term is order of 0.06 ft/seca

2q term is order of 0,02 ft/seca

Vertical force: term is order of 0.04 ftisec2

term is order of 0.03 ft/sec2

Although these approximate values were obtained using model-scale values,

Lheir dimensions are linear acceleraiion; they may therefore be compared

directly to full-scale linear accelerations (see Reference 60), and can be

seen to be negligible.

Also, in the moment equation, the center-of-gravity offset terms

multiplying 9 appear to the second power and may be neglected, as they are

small compared to.Y; ; similarly the 12 term is multiplied by offset terms

to the second power and may be neglected. The terms involving linear

accelerations, however, may be significant compared to , and must

be retained.

The approximate equations are therefore (utilizing the simplification

resuiting from the fact that X. ..

LL

Y, r eU, er

_- - -158
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Subsequently, more simplifications were nmade when the PrMT

Quad Model test data were made available to CAL (Reference 61). 'It -as

found that for the tests conducted, which were fixed-operating point '.ests

at the duct incidence of 45 deg, 60 deg, and 75 deg, the actual values of the

c. g. offset were as follows:

Duct Incidence A, - deg 45 60 75

'Horizontal.[gq~.0. 0052 ft 0 -0.0111 ft

c.g. offset

Vca 0.0071 ft -0.0005 ft

Notice that the values of the actual c. g. offset were negligibly small as corn-

pared to the max.merm possible values in the preceding orde.r-of-magnitade

estimations. Also, it was found that, by examining "lhe test data, the pitch

attitude excursion was well within * 15. With these observations,

Equations (7. 3) were further simplified to (7.4)

A - 9 Zee=,,,., (74

for the analysis of these test data. Comparing (7.4) to our nonlinear equa-

tions of motion for the full-scale X-22A, we see that there is an extra term

- [(i-u) sinOse.9J Z,, which was regarded as a process noise later in the

parameter identification process.

In Appendix L, a linearization of the complete nonlinear equations

(7. 2) was also performed with the assumption that a small perturbation was

valid for fixed-duct tests. The resulting linearized Equations (L. 14) and

(L. 15) are extremely complicated. However, after evaluation of the terms
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in these equations using the quad duct mass parameters 6 = 0. 90, / = 0. 72,

0= . 1, moment of inertia 1,, = 2. 30 slug-ftZ, and the actuai values of

c. g. offset, along with the usual a.zimption that X& = Z; = MA4 =0,

equation (L. 15) may be simplified to

1 (7.5)

l.As

LM M. 0 s

where the variables are perturbation values, and the body derivatives Xi " ;

a, ur, H, S..) are related to X ' by

ft. x• -# "
- ,,1 (7.6)

-fft. " '2

--i/ zi - 'r+ z x

where 1P- , 2 - , Z, 6 are functions of the trim pitch attitude Oe

• sin z 10 .9~t,= e z ,. o.t f~ O t O -, /a 09 eo05 0, o..q , !7s ,l= 2Ci

The values of these functions for the tested conditions a:'e listed in the

following table.

'A-deg 45 60 75
o0de, 01 -5 0 5 -5 5

ff . 9 1.9 0 0 4  .9104 0.9 .9G04 .9004 0.9 0.9004

0I • o .00868 i-00868 0 .00868 -. 00868 0 .00868

;4 .9988- 1.0 .908840.99884 1.0 884

i 60



One may proceed directly to linearize tfe simplified nonlinear

equations of motion (7,4). The resulting linear equations are Flightly simpler

as shown in equation (7.7).

Xo I(7.7)

o 0 00W Ma 0

w,,-r. Yi = y'" (f- o)-sin.Z , i B,, S.,

7. 1.3 Conversion of Princeton Test Data to Identification Computer

Program Data Format

The PDMT test data were received by CAL from Princeton University

in April, 1970. The data include the digital tapes, the analog traces, the

test conditions, and the data conversion factors. There are 29 runs at a

duct incidence of 75; 54 runs at 60" and 44 runs at 45. As described

earlier, all the data were measured with respect to the space-fixed axis

system. Data measured were Os' ,is , a. &3 ' ( :'v , NZ

7, and 3 . The inputs used in these runs were longitudinal stick

deflectio-i with or without collective inputs. The longitudinal stick tinputs

were doublets with periods of two seconds; all the collective inputs were

step inputs. Various levels of rate feedback, depending on duct incidence,

were used in all the test runs. The differential elevon deflections, Ads ,

were linearly proportional to the differential collection commands 69 with

the following mixing ratios:

S,- deg 75 60 45

;1A degI 5 1.0 2.0
/A • eg

Tht pitch acceleration data were quite noisy and very inconsistent with pitch

rate measurements; the data were taken using two displaced linear
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accelerometcrs. Apparently, the pitch accelerometer originally installed

was not up to specifications. More detailed descriptions of the data are

given in Reference 61.

Using the conversion factors supplied by PDMT, the nine-track

digital data of Princeton were transcribed to a CAL tape in their correct

dimensional form (e.g., ft/sec, deg/sece, etc.). These data were further

transformed from the PDMT measurement axis system to a body-fixed axis

system using equation (7. 1). Becauce the linear accelerometers were

mounted with a slight inclination to the reference body axis system of the

model, necessary corrections on the measured 77, and V we.e made.

However, no transformations; were required for Js and .

Since the data were in model scale, the stability and control deriv-

atives identified from these data will, of course, be in model scale. To

convert the values of the model-scale derivatives to those of full-scale

derivatives, the conversion factors can be derived from Reference 60. The

results are listed in Table 7-3. This, then, is the final conversion: the

stability and -cntrol derivatives are now full-scale, the body-axis values,

and may be compared to other available data. We shall next discuss the

results -f identificationi runs on the PDMT data.

I

7. 1.4 Identification Resuits Using Princeton Data

The Princeton data were initially anaiyzed with the linear Kalman i

filter program without using acceleration measurements, since the nonlinear

computer pr-);arn had not reached the final form described in Section V.

Data analysis was begun with 2, = 750 data. Six runs at 1 = 75* were chosen

for consideration; they are listed below with 'heir inputs:

1
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Run No. S•s doublet s step 414
input input degrees fps

.55 .5 3 -1.215 17.26

58 -. 5 .3 -1.526 17.33

68 -. 5 .15 5.968 9.935

71 .5 .3 6.111 9.82

76 .5 .6 -5.57 21.15

79 .25 0 -6.147 21.44

The A = 750 data were chosen for initial identification attempts because

the length of data runs is longest at this flight condition. Because of the

low trim velocity at this flight condition, the small perturbation assumption

on velocity is not valid, as we shall see later. Nonetheless, these data were

analyzed using the linear equations in order to check the computer results

against available PDMT results, which were generally derived using linearized

equations.

A sample of early identification results is shown in Tables 7-'. and

7-2. Table 7-1 shows the results of a lintzar Kalman run on data No. 55

using the equations-of-motion method to obtain initiol estimates. The mea-

surement noise statistics were estimrated from the data and are shown in the

following table.

Measurement Noise at Z = 75 Deg

Motion Measurement Noiaz
Variables Standard Deviation

deg/sec .25

d-deg .15

Ik - deg .10

or - deg .15
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The transient response computed using the parameters identified in
Table 7-1 matches very well with the data as shown in Figure 7-4. Table

7-2 shows Ehe results of using the same data (No. 55) with the initial esti-

mates obtained by scaling down parameter values obtained from the global

aerodynamic program (Reference 1). However, as shown in Figure 7-5, the

response computed from the global %alues matches very poorly with the data,

although the time histories computed irom the parameters identified using

the linear Kalman program again match well with the data.

From Tables 7-1 and 7-2, it is seen that the parameters identified

using the two diiferent sets of initial estimates are considerably different.

This may be partly attributable to the following reasons:

(i) Initial covariance matrix. The variances of the param-

eter estimates computed f:om the equations-cf-motion

program were used for the Kalman program initialization
for both sets of initial estimates. As was discussed in

Section V, these variances are too small to indicate the

dispersion of the estimation error. In a sense, the

early versions of the Kalman filter may be regarded

as attaching a "confidence I.-vel" to the initial estimate

of a parameter based on its variance. If the variance

:s small, this indicates a high confidence level, and

the filter will not adjust the parameter value much from

its initial estimate. Tables 7-1 and 7-2 give evidence

that this was the case.

(ii) Acceleration measurements. Acceleration measure-

ments were not used in these runs. It was discussed
in Section VI that the acceleration measurements contain

additional information. Use of this additional infor-

mation should further alleviate the nonuniquaness prob-

le m.
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Unfortunatelv, as described . arlier, neither the improved start-up procedure
nor the use of accelt ration measurements were included in the liaear Kalrman
program. Thus, the results of the early applications of the technique to the
Princeton data were not cor.lusive.

Several ancillary results, however, were indicated by this applica-
tion. For example, from Figure 7-4, it is clear that the global parameters
do not represent well the model dynamics. Furthermore, it was found that
the linearized equations (7-4) poorly represent the dynamics of the PDMT
model at I = 75. Indeed, a sample calculatlon using rur No. 55 revealed
that the neglected kinematic terms in the linearization of the X and Z
equations, qIhr and qhas , were the same order of magnitude as X.uY,
and X A a , 7,Aar, where the values of the derivatives Xur , Xc , Zu, Zlr
were taken from global or available PDMT values as shown in Table 7-1.
Clearly then, the linearized equations (7.4) are inadequate to represent the

= 75" data.

We also found that the trim definition of the PDMT model is not
entirely satisfactory for identification purposes. Initially, the initial data
point was used as the trim value, a prc -edure which may lead to inconsistent

trim values. In addition, the addition of a collective input at the X = 75*
cases frequently was necessary to maintain level flight path angle (rather

than the expected climb), a fact which might indicate .riproper initial trim.
The use of incorrect trim values in the equations of motion can lead to

erroneous results.

The trim anomaly can be avoided if one performs the linearization
of the nonlinear equations about some accelerated reference conditions

(rather than trim conditions). It this is done, we have, in lieu of equation
(7. 5), the following linearized equations:
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K' Z, -gsin ee a 4e (7.+)

where the variables are perturbation values from their reference values ae

1,re q,- , 0e , tip , t If q. is chosen to be zero, then , "

and b become constants. This equation, with the primes removed, was

later used in the initial application of the techniques to the X-ZZA flight test

data. Since in our nonlinear program the reference values are used in rep-

resenting the aerodynamic terms as described in Sectio!., II, the trim prob-

Jem does not exist.

We now present the results of data analysis using the nunlinear

identification program. Data analyzed are cases at duct incidences of 45'

and 7S*. The flight conditions, inputs, and reference values of these cases

are shown in Table 7-4 and the noise levels of these data are shown in

Table 7-5.

It is to be recalled that, due to the iner.ia effects of the error

"nkages, the general nonlinear equations of motion derived by CAL for the

Princeton dynamic model are very complicated as shown in equation (7. 2).

Further simplifications were subsequently made using the actual data fur-

nished by Princeton. Equation (7.41 shows the simplified nonlinear equa-

tions of motion. It is seen that the X-equation has an extra term which is

not present in the equations of motion for the full-scale X-22 aircraft.

Without modifying the computer program, thL s term was treated as a

rrmodel!;ng error which can be considered as process noise ( c ) as shown

;.n Table 7-5.
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7-8. The transient response matching for the four runs on Table 7-6 is

sh,'.r'n in Figures 7-6 through 7-9. It is seen from these figures that the

parameters identified using acceleration measurements and using modeling

error simulation result in a better match to the data. Figure 7-10 shows

the time histories computed using the parameters identified from No. 154

(the parameter set in the column next to the last on Table 7-6) and the input

of No. 157; the data plotted are those of No. 157; and the responses com-

puted from the initial estimates of No. 157 are also shown in this figure.

Table 7-9 shows a comparison of the effects of linearized and nonlinear

kinematic coupling for run No. 55, and Figure 7-11 shows the transient

response matching for the parameter set shown in the last column of Table

7-9. Notice that the data length used in the nonlinear runs for No. 55 is

10 seconds instead of the total length of approximately 14 seconds used in the

linear Kalman runs (see Figure 7-4). From Table 7-9, it is seen that the

most significant change in the parameters identified appears to be in the

control derivatives.

From these computer runs, it may be seen that the identified deriv-

atives in the pitching moment equation are fairly consistent. In fact, a

sensitivity computation shows that the inputs for these runs analyzed

(doublet in 5E5 and step in 13 ) is adequate for the identification of pitching

moment derivatives, but the inputs do not give sufficient sensitivity for X;

_1$ , Z , Z• It appears that a collective input other than a simple step

is desirable. Thus, it is recommended that the experimental input design

.method discussed in Appendix F, which uses sensitivity as the criterion to

determine the input, should be employed prior to any future PDMT test to

determine an input which would enable the extraction of better quality param-

eter estimates.

As we mentioned earlier, the angular acceleration measurements

are inconsistent with the pitch rate measurements. Clearly, the present

method used at the PDMI of using two linear accelerometers to replace the

sensor is inadequate for the identification requirement. Also, the missing
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terms in the X force equation due to the error linkage inertia coupling were

compensated by considering it as process noise; however, since it is a

deterministic function, the missing terms in the X force equation should be

programmed into the computer equations in the f .ture.

7.2 Application to X-22A Flight Data'

Application of the identification technique to actual flight test data

obtained from the Phase II Military Preliminary Evaluation (MPE II) of the

X-22A variable stability aircraft is presented in this section (Reference 58).

Identification results for two cases each -.t fixed duct incid.ences of A = 30"

and I- = 45" are given, employing both the linear version (equation D. 2) of

the extended Kalman filter and the nonlinear locally iterated filter (5. 1 and

5. 2). Due to the limited availability of transition data, results are presented

for only one -om, transition.

7. 2. 1 Data Selection and Digitization

The MPE II of the X-22A aircraft consisted of eleven test flights,

labelled 2F195 through 2F205, conducted from 31 March to 11 April 1969 for

the purpose cf "qualitatively" evaluating the state of development and potential

of the X-22A VSS (Reference 58). Although the evaluation was qualitative in

nature, data were recorded in flight on a 50-channel oscillograph. Tht.se

f-i~ht data were the only available data for the X-22A for the purpose of

parameter identification during this project. Consequently, each flight plan,

fiight log and oscillograph record were carefully scrutinized to obtain flight

data which could possibly be used in the identification of stability and control

derivatives ,n the longitudinal plane at fixed duct incidence and siow

( * 1.5 deg/sec) and fast ( * • *4 deg/sec) transition. The main criteria

used for selection wer,':

(a) little lateral-directional motion.

(b) large longitudinal man-avers (large signal to noise ratio),
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(c) variable stability system (VSS) in operation

(if possible), and

(d) equivalent flight conditions (weight, altitude, etc.).

All four criteria were considered very important from the stand-

point of identification, as well as, of course, accurate measurements.

VSS operation was considered important because the equations of motion

were written considering the longitudinal stick position, S., as a control

input rather than the individual elevons and blades. Since the feedforward

system is in operation in the VSS mode, control system nonlineariti--s,

which are not rmodeled, are therefore reduced. Thus, when in the VSS mr ie,

the SE5 measurements at the actual longitudinal stick position can directly

be used for identification.

All the required measurement sources, with the exception of er,

were available on the oscillograph traces. Since x. is a function of tOd

the a. (alpha vane) measurements were used in place of ar. This, of

course, precluded data selection at low speed operation. Unfortunately,

not being able io design the experiments (the flight tests) a priori for our

specific purpose, data could not be found which simultaneously satisfied

all four criteria. The best data available were selected for data reduction.

Once a flight record was selected, the measured responses were

manually digitized at a sampling frequency high enough to avoid censistent

bias errors. However, the recorder speed allowed a minuimurm sampling

time of - 1 seconds. Without channel filters, the 77. , f7 and 4 traces

were so corrupted with high frequency noise (especially tbe 77, and 7k

traces) that it was necessary to manually fair ("smooth") a Aine through these

measurements prior to sampling. Consequently, the n,; and n measure-

ment accuracy is very questionable. Since . 1 seconds is slightly coarse,

the sample interval was reduced to . 05 seconds by linear interpolation of

the digitized data. Fairing of all other measurements was don.! where nec-
essary. In general, in addition to the poor quality of the oscillograph re-

cordings, it was iound the data had relatively low aignal-to-noise ratio and
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consequently were not very desirable for parameter identification.

Four fixed-duct incidence cases were selected and digitized from

the oscillograph records. The two cases at I = 30" are 2F197 and 2F203

and those at I = 45* are 2F195 and 2F198. Time-in-flight and aircraft

operating points are given in Table 7-10. Motion variables measured were

qG , ,, f , n1 ý ,nI, and . The control input, , was mea-
sured at the R.H. pitch stick, and, in actuality, sin 9 is the measurement

source an:. not e. Hewever, due to the small perturbation in 0, sin 0z 9.

Three equivalent cases for slow accelerated transition (i = -1.5

deg/sec) were also selected from the M!:PE II data. Time-in-flight and

operating points for these cases are given in Table 7-10. The case from

2F 197 was manually digitized from the oscillograph recorder and the other

two were used to GQfine the refercnce trajectories necessary for the param-

eter identification of the first cane. However, no useful high rate transition

cases could be found.

Motion variab!es measured were the same as those for the fixed-

duct incidence cases. However, during transition, the X -22A was in the

fly-by-wire (FBW) mode, and thus the feedforward loop was not operational.

Consequently, in order to circumven~t control syster, nonlinearities, the

individual eluvon and propeller pitch settings were aigitized and equivale,-t

lonaiLudinal stick positions were found using the static calibration data from

Referencet; 62, 63, and 64. Duct angle, I, , and collective pitch stick,/4

inputs were also digitized from the recorded traces of these variables.

7.2.2 Selection of Noise Levels

1-he nmeasurement noite and process noise levels estimated from

the flight records are given in Table 7-11. Since the effects of process noise

can be observed in the acceleration measurements, two sets of measure-

iment noise 'evels •,re given for the a'ceieration measurements, depending

on whether process noise is assumed present or not.
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Although all high frequency noise was removed by manually fairing

each response prior to discretization as explained above, the standard

deviations of the measurement noise were taken as the peak-to-peak noise

level present divided by 4. These values were then checked to make sure

they agreed with the absolute rms accuracy which could be expected from

the respective sensor and recording system, including the "human tele-

readin.D" of the responses. In this way, the filter will be able to properly

interpret the accuracy of the data it receives.

The selection of Q (the process noise covariance matrix) from

flight test dat.' :s much more difficult. Here, process noise is primarily

construed as uncertainty in the mathematical model or unknown forcing

inputs. With this interpretation, it is obvious that the process noise sta-

tistics are nonstationary with nonzero mean. However, the process noise

is character~zed as a stationary random process with zero-mean in the

filter model Therefore, some means c1f a priori estimating its value (on

the average) must be used. The approach taken here was to assume model-

ing errors in the aerodynamn-ic representation of the aircraft. Since these

errors are observable in the acceleration measurements, er for the process

noise were defined as 10%/o of the so;iare root of the average power in the

acceleration measurements -- called the rms (root mean square) val"Le.

For example, e for qQ was calculated as

where N is the number of data points and 4i is the acceleration measure-

ment of at the i" point. Since n. is always approximately I g, a factor

of 4% was used instead of 10% for this measurement. Results, which are

approximately representative for all five flight records, are given in

Table 7-11.

The analog oscillograph records are manually digitized by
employing .i Telereader.
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It should be noted that, when process noise is used in the filter

model, the noise levels in the ni, n and i acceleration measurements

are reduced accordingly. In the results presented below, the process noise

(when used) was assumed to enter the dynamics through a sample and hold

as explained in Section VI. This interpretation is not exactly correct for

flight data, since the dynamical representation of the aircraft is continuous.

7.2. 3 Results at Fixed-Duct Incidence

The flight conditions and reference values employed for all four

cases at fixed-duct incidence angle are given in Table 7-12. Equivalent

reference values were selected for flights at equal duct incidence for ease

in comparing the parameter estimates obtained.

From the results of applying the technique to computer generated

data 3C-I and 3D- 1 as well aE the PDMT data, it was found that, for the

inputs used in these flight tests, the X and Z derivatives were relatively

insensitive and thezefore difficult to identify, although ýhe sensitivity of the

pitchine moment derivatives appears to be adequate for good parameter

identification of the Ml derivatives. In all identification runs in this section,

the initial estinvtes for the aircraft states ( q , , and&/, ) were chosen

to be the first measured data ;p.oint and the variances for these estimates

(for components o' ) ;,ere the measurement noise on their respective

sensors. Since there is no ar sensor, an equivalent noise level was com-

puted for this signal, using first-order approximations.

Prior to the development of the locally-iterated filter employing

the nonlinear model for the X-22A, preliminary identification results were

obtained on data 2F197 a.nd 2F203 ( % =30*) using the linear version of the

extended Kalman filter (linear model, equation D. 2) without acceleration

measurements. Results for each case are presented in Table 7-13. Since

Sthe linear version of the extended Kalman filter was not programmed with

an cc ,easurement source, a Le7 measurement was obtained by calculating

172



& from the ov , q , and g measurements. Similarly, V arid fl mea-

surements were transferred to z; and 4ý'for use in the equations-of-motion

estimator. The filter was started using the variances (multiplied equally by

a factor of 10) from the equations-of-motion estimator and systematically

recycled three times iorward. Process noise was assumed zero. As ex-

plained in Section 7. 1, X , Z and M were used to eliminate trim uncer-

tainties.

The results for these cases are impressive. Transient response

matching to measured data is shown in Figure 7-12 and 7-13 for 2F 197 and

2F203, respectively. Close response matching to the state measurements is

noted. Clearly, the linearized equations characterize the X-22A very well

for this case.

Using the nonlinear program and the simple version ot the locally

iterated filter (the version in which process noise is assumed zero, i.e.,

in (5. 1) and (5. 2) set Q = 0), identification was performed on 2F197 and

2FZ03 with nonlinear aerodynamics (23 parameters) and linear aerodynamics

(13 parameters) without acceleration measurements. Results are given in

Tables 7-14 and 7-15.

Because of the small airspeed change (a n-maximum speed change of

5 or 6 fps) in both cases, the correct nonlinearities of the derivatives with

respect to a in the 23-parameter cases were not expected; however, upon

evaluating these derivatives at the average airspeed of 138 fps, the two 23-

parameter cases were somewhat consistent with their corresponding 13-

parameter cases as shown in Table 7-16. For all the cases run, the moment

derivatives appeared to be fairly consistent; the Z and the X derivatives

did not. This is attributable to the fact that the aircraft had little motion in

both a. and ar in these two cases. Transient response matching to mea-

sured data (Figure 6-14, flight 2F197) employing 23 and 13 parameters to

represent the aerodynamics, where the parameter estimates are from the

equations-of-motion estimator, indicates that the 13-parameter case is the

best. Although not shown, the computer printouts of the transient responses
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from the Kalman filter also verify that the 13-parameter model i1t better.

Thus, the linear aerodynamic representation in (2.9) was used for further

identification purposes.

From Tables 7-13 and 7-16 the effects of linearizing the nonlinear

kinenatic coupling term in the linear model can be observed. In general,

if the contribution of a Ztability derivative to the aerodynamic force or

moment is of the san.e order of magnitude as 141A and qAtwr(representative

of ".he neglected kinematics in linearization), then the stability derivative

would be expected to be affected. Such is the case for the Md and X,, deriv-

atives.

Results of parameter identification in 2F197 and 2FZ03 without and

with acceleration measurements are given in Table 7-17. In all cases

was formed by multiplying the equations -of-motion parameter variances

equally by a factor of 10 and two iterations were employed in the locally

iterated filter. Transient response matching to measured data using the

parameters identified is given in Figures 7-15 through 7-17. It is seen that

the responses matc.aed very well, especially for those computed from the

parameters identified using acceleration measurements. The exceptions

are the 7 and Wk measurements. However, since these measurements

were so highly corrupted with noise prior to manually fairing, particularly

77 , this was expected. Note that matching is within the measurement

accuracy defined for these measurements. As expected, the moment deriv-

atives identified appeared to be consistentbut the X and Z derivatives

were not. It should also be noted that the initial estimator used a Ue" -

measurement and not aV . Thus a transformation was required.

Another test of the accuracy of the parameters estimated is to match

the transient responses computed employing the parameters identified from

one set of data to other sets of measuied data with a different control input.

This was done for the parameters estimated from 2F197 and ZFZ03 with

acceleration measurements. Results are shown in Figures 7-18 and 7-19.

Figure 7-18 shows data from 2F203 matched against the transient responses
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generated using the parameters identified from 2F197 for both the initial

parameter estimates from the equations of motion and the locally iterated

"filter. Figure 7-19 gives the opposite case. Results are very good (within

the measurement noise levels present) even though the initial conditions of the

aircraft states were taken as the first measured data point and thus could be

in error.

The results also tend to verify the low sensitivities of the X asid Z

parameters. That is, although the X and Z derivatives were not too con-

sistent between the two sets of parameter estimates from the diiferent flight

data, the responses matched very well, thereby verifying ,hat the measured

responses were not very sensitive to these derivatives for the control inp'its

employed and the noise levels present. No identification runs were made for

which process noise was asc-,med present.

Results for flight data 2F195 and ZF198 are given in Tables 7-17

through 7-19. Transient response matching for all cases except F (I) on data

2F198 are shown in Figures 7-20 through 7-24. Acceleration measurements

were used in all cases.

At the time of these parameter identification rums, the improved

start-up procedure (Section 5.4) was in the preliminary stages of development.

Table 7-18 gives a comparison of the equations of motion 6o's ( ,) to the

lower bound 6's (r,..) multiplied by f. . These oT.,, were computed via

equation (3. 19) with the ahp'" term neglected. However, they are presented
here sinLe results utilizing the r on 2F198 are given.

Tables 7-19 and 7-20 show the results for both data 2F195 and 2F198

when process noise is assumed absent and present, respectively. Due to the

poor input, ( 5 ), somewhat poor results were obtained for data 2F195 in

all cases. For data 2F198, which has a better input than 2F195, better

results were obtained for the case in which process noise was assumed pre-

sent. This is indicated by the improvement in transient response maitching
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for this case over the other two (compare Figure 7-22, in which process noise

was assumed present, with Figures 7-20 and 7-21 where Q = 0). However,

from Figures 7-20 and 7-21, transient response matching is better for the

case using the new start-up procedure even when the term % in equation

(3. 19) is neglected. Again, Lt should be noted that the moment derivatives

identified were consistent, but that the X and Z derivatives were not.

Although the states and parameters are not smoothable when process

noise is assumed zero, the fixed-point smoothing algorithm can still be

employed to obtain a better estimate of the initial conditions of the aircraft

states; this estimate will be the same as backward prediction of the final

Iltered state estimate to time to . Table 7-21 depicts the results of the fixed-

point smoothing estimates of the initial states for all four flight records. In

each case, the equations-of-motion variances were multiplied, equally, by

a factor of 10 to form R . The initial estimates, in all instances, were very

close to the smoothed estimates, except for of flight 2F195, which is

different by approximately I deg/sec.

A comparison between the parameters identified at I = 45* from

Princeton data No. 154 and flight 2F198 is given in Table 7-22. The Princeton

results here have been transformed from the model to full scale. Recall that

the Princeton data were analyzed without modifying the computer program

to account for the additional term in the X equation (which is an inertia

coupling term from the Z equation). Despite this inadequacy in the model

representation, and inconsistency in the other parameters such as c. g.

location, gross weight, model scaling, etz., it is seen that the moment

derivatives compare very favorably.

Unfortunately, all of the results presented here for the identification

runs at fixed-duct incidence were completed before the improved start-up

procedure, final variance computation and filter consistency test were pro-

grammed. Also, additional experiments with different noise levels, espe-

cially process noise (Q) with th.i continuous interpretation, may have been

helpful. However, due to the poor quality of the MPE II data, additional
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experimentation ,kas considered to be unwarranted.

From the limited results of employing the identification technique at
"fixed-duct incidence it can be concluded that the MPE II flight test deta is
inadequate for consistent parameter identification of the X and Z derivatives.
Although the Mt derivatives were identified consistently, there was insufficient
excitation by the 9E5 inputs, for the noise levels present, to identify the X
and Z parameters accurately.

From the standpoint of instrumentation, more accurate f and x
measurements are required ior proper identification of the X and Z pararn-
eters. Use of the existing channel filters may prove to be sufticient. In
general, if the flight tests are set up a priori, the present X-22A instrumen-
tation, wah possible simple modification of the , sensor (i. e., a shock
mount), appears to be adequate for identification at fixed-duct incidence of
45a to 0. A ar -sensor (LORAS) or another way to measure wr is required
for lower speed operation. Clearly, a digital recording system is desirable
from the standpoint of economical post-flight data handling when large
amounts of data are to be analyzed.

7.2.4 Resýlts in Slow Transition

Due to the absence of good transition data from the MPE I1 flight tests,

only limited parameter identification has been tried on one slow transitioncase ( , = -1. ' deg/sec) from flight 2F197. The reference trajectories for
, , I W I J6 and 8 were obtained as the , .ge of the responses for this

flight and that of an equivalent flight, 2F205. These references are shown in
Table 7-23. Data for this flight are shown in Figure 7-25. A total of 26
parameters was used to represent the model. The M. , X0 ,and -7 deriv-
atives were represented by second-order polynornials in a to compensate for
inadequacy in the reference trajectory. Using the results of Reference I for
an accelerated transition at i = 3 deg/sec and those of equilibrium transition,
it was considered adequate to represent all othtrr derivatives as first-order
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I
polyoniials or constants. Noise models employed were the same as ihu=,e

used for fixed-duct identification at At - 30" and are given in Table 7-11.
Process noise was always assumed present. To conserve computer time,

the transiorme•a ar measurement was used in place of the arv measurement.

Park -.- ter id& alification results employing the locally iterated filter

with on.- iteraC'in -,re shown in Table 7-24. It was found that the transient

responses eenerated using the equations-of-motion parameter estimates

could not be intel.,-ated beyond three seconds without computer ev--rtlows.

Although it. is not shown. the same situation occurred when 35 oarameters

were used to represent the aerodynamics. Thus, the improved start-up

procedure could not be used initially. However, results employ.ing the locally

iterated filter on 5 seconds of data using the equations-of-motion v-ariances

for Po were much better. Transient responses generated for this parameter

set could be obtained for the full 5 seconds, although accurate response

matching was not obtained. Since these parameter estimates were better

ihan the equations-of-motion estimates, they were used as the initial esti-

mates for a 10 second filter pass. The final parameter ,ovariances from

the 5 second filter, calculated by equation (5. 56)r were used to form P.-

Transient response matching to measured data using the parameters

estimated from the 10 second filter pass are shown in Figure 7-26. The

residual sequences and a few selected filtered parameter estimates are also

shown. The residual sequences indicate that the filter followed the data very

well. However, improvement in the noise models could be made.

It is expected that better results could be obtained by a "boot-strapping'

"procedure whereby the parameter estimates from the 10 second filter are used

as initial estimates for another filter pass. P would be calculated by the

improved start-up procedure without a priori information, and increased by

an appropriate factor for best results. Adjustment of the noise covariance

matrices (R and Q) should also be considered.

A priori information was employed it, this calculation for the lower bound.
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l TABLE 7-3

Model Values to X-ZZA Values

K = .1453

Scale
X-ZZA = Factor X. Model
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TABLE 7-5

Noise Levels for Princeton Data Runs

NOISE MODELS

MEASUREMENT NOISE FOR X= 450 and 750

MOTION MEASUREMENT NOISE
VARIABLES STANDARD DEVIATION

I .25 deg/sec

49 .15 deg

___-_ _ .10 deg

__ _ .15 deg

7________ .0075g
f_ .0075g

S__. ___- 1.5 deg/sec2

PROCESS NOISE MODEL

APROCESS 450 No. 154 and 157 X= 750 No. 55 and 58
NOISE COMPENSATION 10% OF AERO COMPENSATION 10% OF AERO
STAND. FOR X-FORCE FORCES AND FOR X-FORCE FORCES AND

CEV. o" EQUATION ,MOMENT EQUATIONS MOMENT

e4 0 .4 deg/sec2 0 .4 deg/sec2

.05 ft/sec2 I ft/sec2 .20 ft/sec 2.2 f./ec
S 0 3.22 ft/sec 2 0 3.22 ft./sec 2
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TABLE 7-10

Flight Conditions for X-22A Flights

A. Fixed-Duct Operating Points

Case 1: 2Fk95, Time: 38:15 MPE II Flight Test

1. 2200 ft VS Card #27
2. X ;45"
3. 2150 lb F.R.

Case 2: 2F197, Time: 44:30 MPE III Flight Test

1. 5000 ft VS Card #38
2. I z 30*
3. 2000 lb F.R.

Case 3: 2F203, Tin.e: 37:00 MPE Phase IIU Flight Test

1. Altitude: ? VS Card #37, no SAS
2. A z 30"
3. 2i00 lbF.R.

Case 4: 2F198, Time: 38:00 MPE Phase I Flight Test

1. Altitude 2000 ft VS Card #27
2. L- 450
3. 1900 lb F. R.

p•. Transition 45'------o 30 (,, L] -1 l/°/sec

Cas- i: 2F197, Time: 1:20:12 MPE Phase Il Flight Test

1. 850 lb F.R. FBW
2. Altitude: ?

Case 2: 2F203, Time: 1:29:15 MPE Phast MII Flight Test

1. Altitude: ? FBW
2. 600 lb F.R.

Case 3: 2F205, Time: 38:55 MPE Flight Test,Cumposite
1. Attituide: "! FBW
2. 1850 lb F.R.
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TABLE 7-11

NOISE STATISTICS FROM FLIGHT RECORDS

MEASUREMENT NOISE

STANDARD DEVIATION PROCESS NOISE (2)

SENSOR al NOISE VALUE
WITHOUT Q WITH Q

'_ .22 deg/sec .22 deg/sec "• .4 deg/sec 2

9 .09 deg .09 deg I • /sec
_______ 2.6 ft/sec 2.6 ft/sec o' 1.3 ft/sec2

.15 deg .15 deg (1)

.012g .Ollg
7 , .05g .03g

2 2
____ 2.3 deg/sec 2.26 deg/sec
4r (3) 1.0 ft/sec 1.0 ft/sec

(1) .350 for 2F 195

(2) C r % RMS, e.g. c4 a-. u, • (I-

(3) Equivalent noise if zv measurement is transformed
to urmeasurement with c v .15 deg

2Z7

I im m l m mm = vm ~ m m m m m ~ mmw~ ~ am • m m m= m mm m m



TABLE 7-12

Flight Conditions and Reference Values for
X-22A Fixed-Duct Flight Data

FIXED DUCT OPERATINW POINTS

K FUEL
FLIGHT ALTITUDE REMAINING TIME IN VS

- DEGREES - FT -LB FLIGHT CARD NO.

2F197 v30 5000 2000 44:30 38

2F203 z30 2100 37:00 37
t2F195 z45 2200 2150 38:15 27

2FI98 J V45 2000 1900 38:15 27

PEFERENCE VALUES

'FLIGHT a. WeFL TDEG DEG INCH FT/SEC FT/SEC DEG/SEC

2FI97 30 w 2.8 -. 6 135 14 0.0

2F203 30 o2.8 -. 6 135 14 0.0

2F195 49.7 0 3.6 -1.0 108 10 0.0

2F198 47.6 v5.6 -1.0 108 10 0.0
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TA BLE 7-21

Results of Fixed-Point Smoothirg For Initial

Aircraft States

Fixed Duct Incidence 2, L 30*

Data 2F197 Data 2F203
States

Initia Smoothed "IritiaF 1 h Smoothed
Estimate Estirnate Estimate Estimate

q(adel/lu) -. 229 I -. 0914 .913 .390

00 (del) 3. 19 3. 12 3.b9 3.78

Z,, (At/Ie) 136.8 137.4 135.5 141.29

S&' 6/see) 14. 5Z 13.67 14,46 14. 59

Fixed Duct Incidence X = 45*

Data 2F195 Data 2F198
States

Initial " Smoothed Initial Smoothed
Estim.ate Estimate Estimate Estimate

deelsec) .1461 1. 197 .1412 .373

g0 (eq) -. 0542 -. 2107 1.35 1.38

uao, /,se). 107 105.7 111.5 111.1

('t/ec) 12.9 12. b2 j 8.54 I 8.57

* Results are with Q=O and PO formed from aC2 multiplied by 10
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TABLE 7-Z2

Comparison of Parameter Estimates A. 45'

Using Princeton Data and X-22A Data 0

Para Global Value Princeton Data ' X-22A Data
No. 154 2F198

-. 3 .00751 j -.011M,4,. I -.o04 1 -. ooze -. o 014 -

II
MA- ° -. 00652 -. 0124

A-o44 -1. 132" -1. 0-8

5. 500 . 197 .389

M IA .043 .057

-I 1.190 .358 G.Or71

.0,75 -. 0695 -. 0011

x I 3.00 .721 -. 162

Z.1• .0198

-. 180 Zzi -. 083

-. 413 .216 -. 33

.9100 1.477 -1.35

-1.80 -1.848

* With pitch rate feedback

Nonperturbed, Radians



TABfLr' -2

Reference Valuesl Used for Slow Transition Identificaticn

def 48q

40- 40-

0o 6 1 9 O f/10 f20 136 NO0

rIME ...- IAT/~

7.,

-, £&rr

o 2 4 6 / 0 0 2 6 to

rlfF SEC TIME S EC

o 2 4. 6 14; 0 2 4 10
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TABLE 7-24

Parameter Estinmation on Slow Transition

Flight Data 2F197

S=- I 1/2 */sec

r E.0.v. Iterated FilterI Iterated Filter - 10 sec

Parameter I Estimate for 5 sec F (I) Par. & P 0 from 5 sec
1 Filter

(/f 53.49 54.07 191.08
VI -. 8441 805 -. 2363

.00325 .0031 .000773(A4 J -.284 -1.13 -.739
0 it, 001bi 007598 .00555

1.538 .2715 -. 2481

iA4m .902 -. 1994 .3256
M, 14.46 15.36 18.33

frz-.397 -.8224 -.-822

{1\ .778 .8193 1.871

X0 .09.-5 .0917 .07224

/ -. 00040 -. 000388 -. 000303

X. - 037. -. 0449 -. 0449

( 6.21-0 5.919 6.036

-. 0507 -. 047? -. 0,193

.295 .334 .3592
X, -. 505 -. 532 _ _-._5167__

/l\ -9.31 -10.82 -11.27

z -. 2717 -. 258 -. 2499

.000656 .30063 .000588

~,.-.2971 I-.2945 1-.2983
, -6. 738 I -8.36 -7.764

, .0706 .06475

^5 -. 558 -. 531 -. 5232

[ lI , -?.905 -2.902 -2.944
It) .OOI 0400 I 02037

No;pLert.irbgd. deizrces
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SECTION '.IT

CONC LUSIONS

This study has shown that there are four major ingredients that

constitute a successful identification of stability and control parameters of

V/STOL aircraft from test data. These ingredients are: (1) a sound

identif.cation technique, (2) a pioperly designed input, (3) adequate and

accurate measurements of aircraft motion variables, and (4) an adequate

model.

1. Identification Technique Development

A study of three groups of available identification techniques shows

that:

(i) Equation-error methods are asymptotically biased estimators

in the presence of measurement errors, ,%hich always

exis, in practice. Consequently these methods are

inadequate for identification of V/STOL aircraft parameters.

(ii) Measurement-error methods (or response-error methods)

are asymptoti- .lly unbiased e-.timators in th-. absence of

process noise (or modeling ern rb). Ho.vever, in the

presence of modeling errors, a.- is most likely to be the

case for V/STOL aircraft, the response-error methods

give asymptotically biased estin-ates if the dynamic system

and/or measurement system are nonlinear; but the methods

yield asymptotically unbiased estimates if both the dynamical

system and measurement systems are linear. Since the

V/STOL dynamics are nonlinear and modeling errors are

most likely to exist, the measurement-error methods are

clearly inadequate.
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(iii) k study of methods that treat "oth rneasurement and

process errors sho,,ed that the methods available at the

start of this program i•ere inadequate for the V/STOL

identification problem featuring nonlinear dynamics

repiesented by large numbers of parameters, significant

modceling errors, and measurement errors. Thus,

developm-ent of an advanced technique for the identification

of V/STOL aircraft parameters from flight data a.-as

required.

\\ th an klnderstanding of the basic shortcomings of the available techniques,

an ,idvanced technique foi the identification of V/STOL aircraft parameters

,%as developed that is suitaule to do the job. The technique is a scboptimal

s,- uential fixed-point nonlinear smoothing algorithm v.%orking in conjunction

\• ith a locally iterated filter-smoother algorithm 'aorking in an "on-line"

fashion to upda.te the estimates of the initial state and the parameters as new

n1easurement becomes avaiiabie. A good pr.•,,. .. to start up che algorithm

has ,dsu been developed. Applications of these techniques to computer-

generated data and test data, both X-Z-A data and Princeton Dynamic Model

Track test data, have thow'. that the technique is suitable for parameter

identification of nontiotar systems having a large number of parameters and

c1d-nartmncal modeling ei rors.

When a priori information is lacking, as is frequently the case for

parameter identif-cation problems, an imoroved scheme for computing the

%delances of the fixed-point smoothed estimates has been developed. An

alhorithm for the estimation of the unknon forcing inputs has also been

deri\eu to %%ork in a forard manner after all the data have been processed

t-,rohuh tile fixed-point sm oother.

2. Input l)es ion

I- "nm the study of parameter identifiability and the design of an

)pror)prate :nput it %%as concluded that:
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(i) Sensitivity of the aircraft motion to parameter variation

is a good criterion for input design. An increase in

sensitivity results in an increase in parameter identifi-

ability.

(ii) An input design that simultaneously optimizes the

identifiability of all the parameters using e).act optimization

techniques is not practical; however, suboptimal techniques

appear to be feasible by grouping the parameters into

several groups for the purpose of sequential identification

of the grotip of parameters. Also, cut-and-try methods

based on past experience and using sensitivity as the

criteria have be'_.i demonstrated to be practical.

3. Adequacy and Accuracy of the vleasurements

From the analytical study and the numerical experiments on the

test data, it was concluded that

(i) At least one motion variable must be measured in each

degree of freedom.

(ii) Accelerations contain additional information, and should

therefore be measured and used in parameter

identification.
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SECTION LX

RECOMMENDATIONS

This identification program has been severely constrained by lack

of ,%ell-conditioned X-22A data. The data that have been used were taken

from the MPE II flight tests of the X-22A; these data were not obtained for

identification purposes. Consequently, an accurate identification of the X-22A

could not be achieved. Thus, in this identification project, primary emphasis

has been placed on the decveiopment of the techniques capable of accurately

identif:,mng the parameters of the roodel chosen to represent the X-22A

aircralt, usiag computer-generated data. Because of the inadequate flight

data, meaningful correlation of the parameters identified from the MPE I!

flight data with those obtained from wind tunnel data (the global digital com-

puter program) could not be satisfactorily done. Therefore, it is strongly

recommended that, first of all, better conditioned X-?.ZA flight data be

obtained using the procedure recommended in the report and that the de-

veloped identification techniques be applied to these data for more extensive

correlation ,ith the wind tunnel data.

Also, during the course of this project, several problem areas

associated with the developed identification techniques were not comp"ete'ly

solved. These areas could be and should be further studied to improve

the techniques and to enhance their general applicability to V/STOL aircraft.

The major areas that are recommended for future work are listed belo'w:

1. Completely check out the computer program for the

estimation of the unknoxn forcing functions and pcrform

numerical experiments to verify its capability of detecting

the niodeling errors.

2. Program the improved computational algorithm for the

variances of the fixed-point smoothed estimates and

perform numerical evaiaation to verify the theoretically

pr-dicted results.
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3. Improve the identification t.chniques developed by including

the capability of simultaneously identifying the covariance

functions of the process and measurement noise.

4. Modify the present identification computer program to

allow inclusion of additional mathematical models of the

X-22A, both fixed-operating point (FOP) and in transition,

and to reflect the coordinate systems in which the data

are recorded, and then apply the experimental data to these

models to determine the most suitable dynamic models

for FOP and for transition of the X-22A aircraft.

5. Program the complete equations oi motion for the

Princeton track model and apply the Princeton data to

this modet' to identify the stability and control parameters

of th, model.

6. Conduct further study on input design.

7. Establish quantitative criteria for the accuracy of the

measurement instruments (and sensors) required to

achieve a prescribed accuracy of the estimated

parameters.
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A OPENDIX A

LINEAR TIME-VARYING MATHEMATICAL MODEL FOR THE X-22A

IN TRANSITION FLIGHT - AN ALTERNATE IDENTIFICATION MODEL

If the reference trajectory is chosen to be

where 1,q = A. and the corresponding set of references for state and
control variables are ure(kt, 1,e(es), WS. ,e (t) , and 5rs, t() , then it is
readily shown in a straightforward manner that the first ternm in the X
equation in equation (2.4) can be written as

whe l-e(A. 1)
,where

u..

etc.

Similar expressions can be written for the other terms in (2.4). Then, to
first order, equation (2. 1) can be written as

Li, \ 127) 0 MaWmar) W Aq
d I 0 0 0 40

zl zt- IV's2 6) - 0) ' 4"e W

/4- 0 0

J" W(~ J' 1-s"50 iI (A. 2)
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where

e tc

and

qe L

W + ge

248



APPENDIX B

A STATISTICAL ANALYSIS OF THE ESTIMATES

FROM THE EQUATION-ERROR ?.iETHODS

To begin with, we shall discuss the •tatistical properties of tY esti-

mates using the equations-of-motion error method. It has been discussed

briefly in Reference 21 that, due to the fact that in practice the data are

Scontam inated w ith m easurem ent noise, !he m ethod w ill generally give ornly

bia:ed estimates. Here, we shall diLcUss in detail the estimrate using this

xrnwthod and other initial estirnators discussed in Section 3. I.

More specifically, we shall analyze how the bias and the variance of

the estimate are affected by the noise level and the data length used.

Consider a general case in which the process uncertainty is present

in equation (2. 15). From (3.2)

r r (B. D~
where ./(A') (t.), A,(t,),, , fasd

Zo (N) and Ao. represent the results fro~n the noise-free measurements and

4 and AV are the corresponding actual measurements, i.e.,

44! '•. 4jv4. (B.Z)

where -(P ) ,) $,(+tp, .o. f',hv); .•.; •',t), o'j 5 (t),.'', •[j

and 1AN are the errors due to the noisy measurements of the state. The es-i-

r •ator using (3.3) is

(B. 3)

* Now pre-multiplying (B. 1) by [ArANI -A and using (B. Z) and (B. 3) yields

AA (B.4)

Thus the error of the estimate becomes

(A; A#) A &A 
( .5
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The bias of the estimate isit-ifA.- ,I - -A,,_,E`A
L[M (B. 6)

and the mean square of the estimate is

(4j/,,, AV)AN(rN~ 4

AV( A."A r-] (B. 7)

- ý [AwrA)I A; N jvfl JAM(,'r

* (A; 4,,) Al' AA,U .pp'IAAAA (Ar, AV)

where W and U. are the covariance matrices of if(A,,I and tr(N, respectively.

Front (B.6) and (B.7), it is evident that

A

0i) The estimate p is biased, even if the noise vector in

the acceieration measurements %'(At) ,and error vector

in the equations of motion, WP'N) , have zero mean and

are independent of Am .

(ii) The bias of the estimate is affected solely by the error

in the state variables' measurements as long as the

error.: in the acceleration measurements and in the

equations of motion are zero mean.

* (ii-) The variance oI the estimate is, however, affected by

.he noise level of all the measurements and by the

equa tions-of-motion errors.

Quaitatively speaking, it is also evident from (B.6) that the percentage bias

is di-tated by the signal-to-noise ratio in the state variable measurements.

Indeed, .f the signal-to-noise ratio is infinite (i.e., no measurement errors

in the state variables), there is no bias; if the signal-to-noise ratio is zero,

then the parxmeter estimates become i00% biased.
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Questions remain as to how ;he bias is affected by the data length

for a given .ignal-to-noisc ratio, i.e., does an increase in data length help

reduce the bias? In other words, what is the asymptotical behavio: of this

bias? The answer to these questions has also been found. In the followxr1

analysis it is shown that

(i) The estimate is asymptotically biased. Thus, use oi

longer data records does not help reduce the bias.

(ii) The bias increases as the sign.L-to-noise ratio,

decreases. For single parameter cases, the percentage

bias is given by f ,Xotoo
Wed

of the true value of the parameter. Similar r-sults have

also been obtained for n-parameter cases.

Sr In order not to be bogged down by the complicated matrix algebra

which tends to obscure the basic ideas, we shall consider a single scalar
equation

(B. 8a)

with the measurements
i 1 ¥÷ f ) (B. 8b) -

( 8

We shall later extend our results to the vector equations. Substituting

(B. 8a) and (B. 8b) into (B.8c) there results

~ (B. 9)

Thus, from the viewpoint of classical linear regression, the combination of

the equation-of-motion error ur, and the error in the measurement of the

acceleration i is what is important. Consequently, there is no loss of

gererality to assume that art 0 and that

Z5 1



rJ~ ( B. 9a)

L %B. 9b)
r

(B.9c)

In other words, e., 1uation (B. 8a) is deterministic; the measureinent errors in

the state variable and the time rate of the state variables are ?-ero me-in,
22independent, and with finite variance Orf and respective .

Upon an application of the classical linear regres ion to (B. 9) there

results a seq.tence of estimates {ajJ for the parameter a co-responrding to

the number of samples:

Y•'f x 9,

. '•, - '/ Ig one data point (B. 10a)

e ' two data point; (B. 10b)

n- data points (B. lOc)

First, we shall consider the one 3ample (one data point) case. We have

Since t;&.) -ind z(e,)are Gausstan random variables, i.e., have density

functions

(Jv-At (o, erl. Z) x- f -

it is clear from (B.8a) and (B. 10a) that y, and j, are also norma! variables.

In fact,
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yf (B. Ila)
i4¢•)- v. (ofe C, 2 ) ( B. I l b)

Since e (0,) and V .,() are independent, hence y and e also indepen-
dent, and hence jr, and 1, are Jointly norrrml. It follows that isee, for instance,
page 197 of Refe-encv. 65)

¢00

-~ (B . lIlc )

Using (B. 11) and a great deal of algebraic manipulations, it was foumd that

Iz e f'Z"

t.where ( /o# a

Mro 
(B. aeb)

1• (4.) e-IWe now exare the two limiting cases, i. e. , -0 and --- $
From (B. 12a), it is readily seen that A

CIO
fA z (B. 13a)
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€I A
0 1

(B. 130'

Thus, it is recognized that as signal • approaches zero, the estimate

approaches the Cauchv distribation, resulting in a 100% bias. On the othex

hand, as the signal-to-noise ratio increases without bound, the distribution
A

approaches a delta functio'i occurring at _= -R . The bias a- well as the

variance of the estimate is zero, indicating that the estimate is the true value

of the parameter. Actually, this comes as no real surprise, because the

problem at hand becomes purely a deterministic one.

Figures B-I through B-3 show the plots of (B. 12a) for different valhe,•

of signal-to-noise ratio, i.e., %/cr = 0, 1, and 10, assuming that -z = a

and a- = 1. Note that in these conditions, the percentage bias can be ex-

pressed as

S• (/c) fO0Z (B. 14)

We now proceed to exanm.ne the cases when more data are used. We

ma-i proceed as before for n = 2, 3,..., but the algebra becomes too com-

plicated to warrant this approach, and we shall not pursue this line further.

Rather, we shall examine, in detail, the asymptotical properties of the esti-

mate a.. , as Y7-- oo.

Xi ith reterence to equation (D. lOc) it i- readily seen that both the

random sequences

Z 2 2
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are independent with respect to their own elements, that is, a" & nd Yjyt.

are independent; further, q, and are also independent for all 1-6 i r, , .

By the central limit theoremr p, and q de.;ned in (B. lOc) %ill both appr-oach

normal distribu.ions as y.*-o, i.e.,

- 1: qzl normal variable

_______nurmal variable

as n -a co.

To provide a common ground for comparing the statistical properties
o f . as n-&o* and a , and to simplify the algebra, it is convenient to con-

sider that the signal-to-noise ratio is constant. (In practice this condition is

relatively hard to realize, since *(N) is charging. However, if 1,&) if a

stationary random process such as tlke motion of the airplane resulting from

random gust excitations, it is realistic to assume a cont-tant signal-to-no~se

ratio.) With this assumption, we have

LqL~J 2(B.:5)

Recall that p. and are sarrmple xnean for y] and (ij respectively;

their mean and variance are respectively

t412

~2 £ (B. 16)

Thus, the density functions of .pand f, as 77-voo are

An, (B . 17)

255



v'here

Since -p,, and 4,, both approach normal variables as- .. o, the re-
sults outained .or (A,4 , which we recall is a ratio of two normal variables,
can readily be used. By comparing (B. 17) with (B. 11), it is easy .o sce that

- le 4 im0 •e
00..e (B. 18a)

where

-Z 
)ZAa,, -.-

,/ _z

- C

4 c 4

A 2 5

Az

Ler,~ , 6 ~(.c f
x c B1b

e5



This new result serves to answer the two important questions pre-

viously raised. We conclude that

* 7he estimate " is asymptotically biased.

* The bias depends solely on thbz ratio of the signal to state

vwriable measurement noise, •/o, and is given by

In tie language of probability theory, equation (B. 18) says that the

sequence of the estimates On,] converges to a with probability one, as r-,oo.

The above asymptotical analysis for a single variable case can readily

be extended to a multi-parameter case. Consider a two-parameter system

I(B. 19)

where EL,, - E [0, . '.-

E- [ail] a [] (B. 20)

and i , 2, and M. are independent. By a similar analysis as for the single

"parameter case, it is not diffl.cult te show that

4ian (B. Z1)

with probability one. Namely, and b,, converge, with probability one, to

Le, ()Z z• ' I. 1•"

(B. ZZb)
II W1 ( B .257
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For the general k-parameter case

44, -- S 461 4, • At - '- t (B.23a)

with the measurements

•i = " + •(B . 2 3b)

where E =

and a, vri are independent, the estimates of the parameters (1p,) ,

.(t) converge to

... . . 23ci
with Lfj 41 eX .e 4C

with probability one. Namely,

- ~) 1A Ij0P", I

7+7 -V. (B. Z3d)

with probability one.

The other equation error methods discussed in Section 3. 1 are also

asymptotically biased estimators. The bits of these estimators, like that of

using the equations-of-motion method discussed earlier in this section, stems

from the fact that the regressor in the least square fit is stochastic (due to the

errors in the state variable measurements) and the fact that the regressor

and the errors in the least square fit are correlated.

Consider, for instance, the Denery's initial estimator (see Appendix

C). The matrix
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in (C. 9) is stochastic, since (i) is a solution of the stochastic differen-

tial equation (C. 8). Further, this matrix is clearly correlated with the

vector in (C. 9)

I7
z W

te in (C. 9) are asymptotically biased.Tm

Consider next the polynomial estimator and the modified (floppy)

- spline function estimator. For the purposes oi illustration, consider a single

parameter case.

(B. 24)

First, we fit a time function (t) using a set of deterministic base vectors

(polynomials or modified spline functions) to the state measurement q (6).

For At sample points (see Equation 3.7).

V .4T

if- r (B.(7A25)A;i ~~~. (A,[, rAv)" A/vy*, (.)

where lc-.A,(ANrAVP. is a deterministic matrix.

Then, since X, = aZA , (B.25) yields

1 0 A r

Y'V aq.V(B. 26)

and the least square fit . to a in (B. 26) gives

A • (B. 27)

Since f is a random vector and is correlated with (K-;, 'v- ) in

(B. 27), the estimate • is again asymptotically biased.
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APPENDIX C

DENERY'S INITIAL ESTIMATOR

In the following discussions of this technique, it appears to be easier,

insofar as conveying the basic idea is concerned, to use a multi-output phase

variable form (Reference 66) rather than using Denery's canonical form pre-

sented in his original work (Reference 12). Consider a linear systern

if 9 4 .0 v J (C. 1)

where X, is the state vector, (n-vector); a2 is the control vector, (r-vector);

q is the output vector, (m-vector); and V' is the measurement error vector.

If V < fl, there are generally infinitely many sets of (F, ; , a/) that can fit

(C. 1) as far as the input-output relationship is concerned. To be specific,

therefore, we shall assume that we are to fit the system (C. 1) by the follow

ing system:

H (IC. 2)

wht-re )

which is represented in the phase variable form (see Reference 66). Notice

that, as far as the input-output relationship is concerned, the two systems

are equivalent if noise tr is not present in (C. I). It is to be noted also that

the unknown parameters in a affect the output • in a nonlinear fashion, but

the parameters in G0, affect the output linearly. The n x m parameters in oc

are to be related to a set of n x mn parameters that affect the output linearly.

Consider a "filter" with gain matrix K, which has a total of n x m

parameters, that operates on the output to in conjunction -4th the system

(C.-2):

ill ~(C. 3)
Notice that, in the absen'ze of the measurement noise r in (C. 1), (C. 3)

reduces to (C. 2) regardless of the filter gain matrix K. Let

G^. - 0o- (C.4)
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Then, by chcosing F, and -C/ - an o are u..qu•.y determined ii K

and 56 are first determined. Using (C. 4), (C. 3) becomes

(C. 5)

It is seen from (C. 5) that q(t) is linearly related ko K, ;G , and A. ,

where x, = ,v* * A X0 " Indeed,

(+)o = A WeS r)r e(C .6)
o

where

and

Let us now arrange the unknown parameters in 56 and K as the components

in the parameter vector -. Then

where the matrices . are the solutions of the

following linear differential equations:

d 9j9k a
dt 89 .p 3o,

(C.s)

Using tne same performance index as in the measurement error meithods,

ti
I o

the parameter vector p and 15'o can be computed by minimizing J without

L~ tap 9XV j 0 ap: ~ 1
' T64
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For the special case in which all the state variables are measured, 7i1

t and (C. 9) is further simplified. By comparing (C. 8) and (C. 9) with equations

(4) and (5) of Reference 21, it is seen that they are identical in form with the

exception of the term •- €(t) in (C.8). Thus, thic term can be replaced by

•"z't, after the first iteration (which computes the initial estimates), and

a u.inified estimatioi. procedure is thereby achieved.

When measurement noise is present In (C. 1), the term 19- YO) in (C. 8s

is a random process and the solution (C. 9) resulting from applying the linear

regression is biased. This and other statistical properties of tne equation-

error methods presented here are discussed in greater detail in Appendix B.

Z6

I"
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APPENDIX D

COMPUTER-GENERATED DATA FOR IDENTIFICATION STUDY

Several possible techniques exist for parameter estimation of non-

linear dynamic systems, as discussed in Section III. In order to evaluate the

relative merits of these various techniques, such as accuracy, cunvergence

properties, computing time, storage requirements, etc., time histories of

a system representative of the X-12A, with known parameters and noise sta-

tisticsare needed.

The subject set of data was generated by integrating a set of longitu-

dinal, three-degree-of-freedom equations of motion. The values of the sta-

bility and cortrol derivatives used as shown in Table D-1 were the best

approximations to the "global aerodynamic" data (Reference 1). In all the

cases, independent unfiltered random noise sequences with Gaussian distri-

bution and zero mean were added to the outputs of the state variables and

their derivatives, simulating measurement noise. In addition, for some of

the cases the same type of noise sequences was added in the equations of

motion to simulate gusts. The trim values were:

a = 30 degree 06 = 2. 362 degree

0 = 130 ft/sec = 17.257 degree

= 5.362 ft/3ec 4% = -. 637 in.

Both linear and nonlinear models were used. They are:

1. Nonlinear Model:

Dynamic System Equations

- . . t• -A , ~ •) (~''

(D- la)

,"'.. ,..< L',J
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where the components a, r and are the components of the disturbance

or gust vector and i is the gravitational constant.

Measurement System

where

k (D- lb)

~(tip - a) - Co s (

Y and m are the noise vectors, whose elements are sequences of random

numbers, and B and C are diagonal matrices made up of the standard

deviations ci for the noise sequences. Two levels of noise were used. The

one considered to be "low" has standard deviar'.ons cthosen to approxirrmate

I the recuirements in Reference 67. The other, conside-red to be "moderateft

is five times greater (see Table D. 2).

I
I 2. Linearized Model:

Dynan-"c Equations

[a"j ao o a
! L,,, • o J(D. 2a)

[ZA hets 1v~ 1 , 1v
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Measurement System

whe re (D. Zb)

All £ (d~ ea)Cs9e+ OSO"

"* These expressions were sl-3htly in disagreement with (D. Za). Thus, a

term Aq 4ar in Afnx and a term -qA,; in 6. will occur if

acceleration measurements are used in this linearized model.
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TABLE D-I Actual Parameter Values Used in Generating Data

LINEAR EQS. OF NOTION

NOTATION *F %, {
IPARAMETERS .

SOIMENSIC.1N lIFT-SEC - I/SEC I/IN.-SE I/SEC FT/IN.-SEC 3EC - FT/I_. SEC

- 2 A -1 10-.260003 .6

VA LUE 
-.

04 
-S1" 

1

IMELNONLINEAE EES. OF NOTIO I S

COMBINED ". NoE L A.() .,()

MESAERATNOMETERRAE_- -

I C O N D ON E D I/ S E C 2 : /F T "-.$ E C I/ S E C i I/ IN ,- S F L2 F T / S "•2 11 4 t F T / 1OCS 
AE 

C 2 F T / / F TOIN.LS E C 2

I ~ ONOERO IICTO INYN~RT -OF, EXEPT - _ _ _ --

I S OSIS .0017#7h-.97 NOIS E 1.3 .22L -32OIS.17 - -S.0

"" 1-0 0 -. 0063 -0001.00116N7H N.0916 LOOW ]$ .08 91-0271.1

F (OELIN NOIT R PLUS ADST" NOIS E AOOFIISE I-0 I
i O•FIli]IS S MNEASUO[INEIT NOISE LOIF )-A

_St A1IA• DEVIATION ONLY

LOW MODERATE [COMINED %1u1 x11u)
GUST* I O U 1.0 FPS 5.0 FPST- SEC I/SEC

(PROCES .' 1.0 FFS S.0 FPS COINEO I -C ISEC
NOISE) O 0.2 DEI/SEC 1.0 DES/SEC OlM!NSI0, _

( O.S FPS 2.b FPS .0 .13 06 j.213
0.67S FPS 0.375 FPS .,l -.t3 ...o 9!g -.O'327

WASUREMENT 0,03 O0F6 O.IS 0602 1
WOISE 0 0.01 DEG/SEC O.OS DES/SEC s V2 ...

*k 0.001 g 0.00 I i ~. =10232 000I44S0 -.00I236

'1Z 0.0a01g 0:0251 W
0.002S DES/SEC2  O.012S 0(0/SEC

2  _

S in integrating the equations of motion, these gtsts were held constant
during each integration step. because of "zero-order hold", the variances
of these gust become _MLf.! a• 269



PERTURBED PARAMETERS

From equations (2.8) 4nd (1. 103, i- is seen that the aerodynamic

terms are expressed as thixd degree polynomial in forward speed w . Based

nri numericai experience, it was suggested by Dr. J. T. Fleck and

Mr. D. B. Larson of the Computer Mathematics Department of CAL that a

betýe, numerical condition would result if the parameters were expressed

in the perturbed values during the identification process. Consider a typical

term in (2. 10) ( with reference notation R dropped).

r %(u} = •,•(E.lI)

Let us express the parameter vector a, as a "perturbed" value, i.e.,

a (E. 2)

where - A
.(E. 3)

and ~() uo

Using (E. 1), (E. 2), and (E. 3), it Is readily shown that a. is related to a•.,
by

t 7 T•1(E.4)

whe re

T= 0 t

_o 0 o (E. 4a)

and I

0 " 2a-Za, 3&,,I
I 0 0 f -3z

0 0 O f (E. 4b)

These transformation pairs ar: the same for all the 16 parameter vectors

in (2 10).
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APPENDIX F

DESIGN OF INPUT

The design of input signals for parameter identification has long been

recognized as an important ingredient to a successful identification of param-

eters. However, design procedures based on optimization techniques have

not been discussed until recently (References 68-71).

In our early numerical experiments using sensitivity oi the aircraft

motion to pearameter variation as a criterion, we found that a better input

function did exist and did drastically improve the parameter estimation.
Tables F-I and F-2 show the results of applying an initial estimator and the

linear Kalman program to a system responding to two different control inputs.

The results clearly show the effects of the control input on the quality of the

parameter identified.

In fact, if we use mean square estimation error as the criterion for
'A the quality of the parameter estimat'on, the best performance for a given

set of input functions (and hence the data)is given by the Cramer-Rao lower

bound (Reference Z9). Therefore, the design of inputs may be formulated

by attempting to minimize the Cramer-Rao lower bound. Since the Cramer-

Rao lower bound is related to the inverse of a norm of the sensitivity vector

functions, the problem then amounts to a maximization of the sensitivity

vector functions.

To make the minimization problem meaningful, constraints on the

magnitudes of inputs and the state variables must be added so that the equa-

tions of motion for the vehicle will remain valid. Unfortunately, the design

of an input, when formulated in this manner, becomes a typical optimal

control problem requiring a solution of a 'wo-point boundary value problem.

instead of solving the two-point boundary value problem associated

with a large number of diLierential equations, we present first an attempt

to find a suboptimal solution using a technique similar to that used for

parameter identification. We then present an attempt to solve the actual

two-point boundary value problerm with a smaller number of parameters.
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VI

Statement of the Probieni

Consider the dynamic system and the measurement system (F. l)and

(F. 2) respectively, i.e.:

(F. 1)

where as usual V(.0~ an (7 t r (F. Z)

It is desired to minimize some norm of the Cramer-Rao lower bound matrix

for the covariance of the estimation error, where

gr ;,, P 1A91 e fFý 9,4 1__ hIl K I' -- 4 d (F.3)

s3ubject to the constraints on the 3ensitivity equations (F.4) and (F. 5) i.e.,

i?12g ,*• *''p (F. 4)

(7 T, ' (F.5)

and to tb-h constraints

, and (F. 6a)

or

I -M) de :r- e (F.6b)

The constraints (F.6) are required for the mathematical model (F. 1) and

(F. Z) to remain valid. In equat~on (F. 6), 1l and I are constant vectors; K

is a sczlar constant; and Q is some cost function.
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A Suboptimal Input Design

k: The problem as stated in the preceding pages is a typical optimal con-

trol problem ior a nonlinear system with a large number of equations.

Indeed, even if orte uses the linearized representation for VTOL aircraft

dynamics, for instan-e, the input design for a ten- parameter problem be-

comes an optimal con:trol problem with constraints on 44 differeittial equa-

tions (4 original equations of motion plus 40 sensitivity equations) instead of

just the original fourth-order system. This is a formidable two-point boun-
S• dary value problem!.

To circumvent this difficulty, one may seek a much simpler suboptimal

solution. Instead of choosing the control input function from all those admis-

sible, one can restrict oneself to choose from those which are a linear com-

bination of the solutions to a set of chosen linear time-invariant differential

equations. This reduces the two-point boundary value problem to a much

simpler problem of parameter minimization, much the same as the measure-

ment error parameter identification problem. Thus, the design of the input

can be carried out using the existing computer program for identification

with some modifications.

Consider & linear time-invariant system

+ -÷ -=(F. 7a)

A- = .11 (F. 7b)

Then a suboptimal control problem can be formulated ds follows:

Find to minimize

*~*74'2 7~dtJ (F. 8)*

C*19i was used instead of IC21i- in the computer program. However,

this should not adversely affect the results, as the diagonal terms of C2
are all positive anyway.
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subject to tLe c( nstraints

a =) -M (F. 9a)

4= r,,,,s,-,'#,,,.,•-,,, y.ok--o, ] ¢,, ~ (F.9b)

whe re V1 'e {,g )

and the control functicns m(e) are restricted to those that can be generated

from a linear system of kno.-a form,

(F. 10)

where the elen'ients in B and the initial vector are unknown parameters
to be determined by minimizing Y

NOTE: F , 6N -ire nomirnal system matrices, F- 6 -i are partial

derivatives of F and C with respect to stability and control derivatives to

be identified.

The suboptimal input design problem as formulated above is a typical

parameter optimization problem such as the measurement error method.

Table F-3 shows a sample run using the conjugate gradient mnethod. In this

computer run, the following parameters were used.

2;i A4 I
,./=0. 0/

1. 584 0 0 0

0 0

r4= o 10 4 t- =180 0.
o o o #057o0

4-- (at, i•r, 9, r

42, = r, Q2 =1o4, At=o.t,, 9 = ,=

and FN and G" are as shown in Appendix D.
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Awo cases were considered. one utilized 4 modes and the other one

utilized 8 modes. The initial guess values ind the final values for 19 as wellI as the time histories for the control inputs , ,,N)were also shown in the

table. Notice that, although the signal power is smaller for the 8-mode case

than for the 4-mode case, the Ce values are smaller for the 8-mode case,

resulting in better parameter identiiication.

In the above numerical exampie, one .may, of course, vary the

weighting Z21 so that the final input power, fe Awt)dt , or si nal power

be made approximately equal 'o those of the initial input power, eAAV)dt
However, due to limited time and money, this experimentation was not

carried out.

We now discuss another method which is a direct soluwion to the actual

two- point boundary value problem.

An Optimal Lnput Design Method

Instead of minimizing some norm of the Cramer Rao matrix, one may

choose to maximize some form of Fisher's information matrix (Reference

For instance, we may choose to maximize the trace of the above Fisher's

information matrix, or equivalently, to minimize the negative of its trace.

This would be equivalent to maximizing the sensitivities of the desired pa-

rameters. The essiest wa.y to do this is to increase the signal-to-noise ratio

of the measured responses by increzsing the size of any given input. How-

ever, since the ncise level is fixed, increasing the signal-to-noise ratio

eventually leads to the point: where the responses become too large to control

j or the model chosen for the airplane is no longer valid. In the example

* Goodwin (Reference 70) has pointed out th.'t they are not exactly
equivalent.
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using the prece'.ing suboptimal apiproach to the input design problem, in-

creasing the SLg;'al ievel was essenitially all that was accomplisned. With

that method, a final input had to 1e made up from a given set o! baEe vector

inputs, and the shape of the final input is no' altered significantly. When the

optimal approach is taken, however, the final input does not depend on any

t•i.ten base vector of inputs, and does change the shape of the initial input.

The optimal approach i, oasically a solution to a two-point boundary

value problem using the conjpgate gradient method to update the initial input

(Reference 72). In this r-ethod we wish to minimize the performance index
3:

7•~rs P ' g.. 2 , 5. *" - ra•Mt (F. 11)

The first terms above are the negative of the trace of the Fisher informnation

matrix, and the last term is a penalty function of the state vector X, which

is added to keep the responses of the airplane within reasonable bounds. C

is an inputted constant which determines the weight given to the penalty

function. The system is:

(F. 12)

where r

& v 9(F. 13a)

(F. 13b)

A UjI/0 ~(F. 13c)
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0 0 • .0

K -Or 0
(F. 13d)

4-•

_~ .e

t W# ( F. 13e)

S- 4x I state vector

S- 2 x I control vector

F - 4 x 4 stability derivative matrix

G - 4 x 2 control matrix

- 4 x I sensitivity vector of parameter, & = f, 2,...

".P. - parameter of interest, i = 1, 2,...

Define the Hamiltonian H,

T r
V W (F. 14)

where

or

S' 0 ](F. 15)
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The gradient is

t). -T 4 ) (F. 16)

To u,,date the control, mwk), the standard conjugate grz Rient method

is used: ( -= tration no.)

-4 6 (F. 17)

where a.,(Vz ,
a~i t) - =• (; ÷•i-,a•- c,) i• /(F. 18)

f/[ ! (F. 19)

~ fi cr9 di'(F. 20)
In the iteration scheme the control, m(M), is also bounded at chosen values,
so the inf.-*-, will not become unrealistic.

The procedure is to first initialize the control input, then evaluate

S(t) by integrating (F. 12) forward in time. Next, 101't) is evaluated by
integrating (F. 15) backward in time from t, . Now 9(61 is evaluated from I
(F. 16) ar.nd '() is updated by (F. 17)-(F. 20). " is calculaled and the
iteration is stopped if it has reached a minimum;, if not, the procedure is
repea',zd by evaluating Va(t) with the new MCIP.

For a preliminary look at thib method it was decided to use a linear
model of the X-22 with just AS control, and to maximize the sensitivities
of M , Me , 1.4 ,and 7rw . This reduces the size of information matrix

down to a 4 x 4 matrix.

Figure F- 1 shows a computer rt-n which utilized tht following param-

eters.

Z78



e= 10,000

o 0 1
:.O va0 o

L

and the F and 0 are the same as the preceding example. The initial control

perturbation was d 50 = 0. 12 inch. Notice that the initial and final signal

&o noise ratios J r.,-t

0

were approximately the same, but that the sensitivities of the parameters

were doubled. It is interesting to note that the control reversing occurred

at approximately 1. 5 seconds which is about one-half period of the oscillatory

mode of the X-22A at this flight condition.

Concluding Remarks

As a result of our studies on input design discussed in this Appendix,

5 f the following remarks are in order:

(i) Sensitiviqy of the aircraft motion to parameter variation

is a good criterion for the input design. An increase in

sensitivity results in an increase in parameter iden-
i tif iabili ly.

(ii) Input design using the exact optimization technique is not

practical for all the parameters simultaneously; however,

suboptimal techniques appear to be feasible by grouping

the parameters into several groups with a smaller number

of parameters in each group for sequential parameter

identification. Also, cut-and-try methods based on

past experience and using sensitivity as the criteria have

been demonstrated to be practical.
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TABLE F-2

EFFECTS OF INPUT ON KALMAN FILTERING *

1-D DATA: MODERATE

TRUE MEASUREMENT AND

PARAMETER PARA1ETER PROCESS NOISE

_ VALUES OLD f NEW
"VINPUT** INPUT*

-. 0044 -. 00424 -. 00454

-. 0075 -. 00847 -. 00749
M4 -. 6250 -. 32170 -. 74280

ief .4800 .49670 .52260

-. 1500 -. 19650 -. 15420

____ :0210 - .02290 .01495

)(See 1.3710 •.61270 1. 68330

-. 2160 -. 16160 -. 1971UJ

4' -. 6500 - .59160 -. 61060

1.6600 4.73220 1.07400

• Without Accel. M~easurements

•* Old Inptit New Input

A ge s aA 

m

0 to.Io

Z82

I



TABLE F-3 A Sample Rur of Suboptimal Input Design

Time - Seconds3 
0 2 3 4 5

0

.3 " . ... Final 8 Mode Output

a0 o

= -.4 . . ------- ---- ,• - -

•- •Initiale Out p u

- 7 - -- I --- - j --- ----- j-- --

* a a

4 Mod Cslo (,f..' -T 8 Mod case

0 =. . . L (......0 ... .. .

7 .. . a .. . a a

2 P , 2---- --, , ... ,3

-------------------------Cas---Fia 
4od Mode Ot

0 0

0 - 0 0 -. 2- 0. 0

"0t 0 0 0 0 0. 0 o

i .o • o oI a o .a

00 0 0 0 0 00 0 0I.. 0 -04/•- o -0 - -. 000 0 05 
00100 0-20 00

00 0 o 0 -. 2 0 0
0 0 0 0 0 o o0 4

0 0 0 0 0 0 9, -. 24
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APPENDIX G

MATHEMA TICAL PRELIMINARIES

In this appendix, several pertinent properties of Gaussian random

variables are first discussed. The importance of the conditional expectation

to parameter estimation is then stressed. Finally, some useful properties

"dnd formulae for Gaussian conditional expectation and covariance are given.

"These formulae are necessary for the development of locally iterated filter-

smoother and fixed-point smoothing algorithms.

Some Properties of Joint Gaussian Random Variables

Let Y be a random vector of n-variables i 1, 2 ..... ,.

The random variables i" are said to be jointly normal if their joint density

function 4i(%) =4 Pt", is

( /Z1Tt, eip z (G. 1)

where the mean i and the covariance matrix P., are defined by

S• gfi E()= . _ •(G. 2a)

i Pit

-- - -- (G. 2b)
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E is the expectation operator and IP6, I is the determinant of Rt . Note

that the density function 4C(%) in (G. 1) is characterized by only two param-

eters, the mean i and the covariance matrix • . For this reason, it is

of symbolic simplicity to express the sensity function (G. 1) as

Consider next the random vector u,=(%~r T )' where t is a n-vector

and y is m-vector. Assume that x and y are jointly normal. Then

where by definition

(G. 5a)

PU U (G. 5b)

It is easy to establish the the following important properties of the joint

Gaussian random variab!es.

(i) A linear transformation of Gaussian random variables

yields Gaussian random variables. For example, let

ar = 7-a, , where T is a linear transformation. Then

(ii) Let x, y be jointly normal. If x and y are

uncorrelated, then x and y are independent. This

fact is readily seen from (G. 1), (G. 4), and (G. 5).

(iii) If x, y are jointly n',rmaI with joint density function

(G. 4), then x and y are both ma.rginally normal

with marginal density functions t(z)--N(V' P- d op?(t( A&-,)

respectively. To show that x is normal one simply

chooses the transformation T to be
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T1

(4: - o 
(0. 6)

where X. is an identity matrix with the same dimensions

Ps x. Similarly, to show that y is normal, one chooses

/ z

(iv) Let x, y be jointly normal with joint density function

(G.4). Then the conditional random vector xiy

(x given y) is also normal. Indeed, using fCIy)- •z•g)

It can be shown that

S J (1•) fft(•] O)(G. 8)

E where

ri : t

In particular, if x and y are uncorrelated, then
= = • Thus, the condition

on y is removed.

(,') Let x, y, z be jointly normal with joint density

function
.,f(av>= (i, "-? ) (G. 10)

where

r (C(G. Ila)

(G. b)
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(G.l1lc)

If x, y are individually unccrrelated with z, then x

and y are jointly independent of z. This is easiiy

seen from (G. 5b) and (G. lIc).

These important properties will be utilized to ef .•blish some useful pro-

perties of Gaussian conditional expectation and conditionial covariance later.

The importance of the conditional expectation is discussed in the next section.

Fundamental Theorems of Estimation

Problem Statement

The general estimation problem can be formulated as follows:

Let x be the state vector (which may include the unknown parameters) to be

estimated. A set of measurements ." is made which are related

to the state by

h ,Xi (G. 12,)

where'

% is the measurement vector, an rn-vector

zi is the state vector, an n-vector

Sis the noise vector, an rn-vector

The problem is to estimate V4, f -Al based on the observation
Y(n) y[, r f An -- h/. Depending on whether A 77, ;7,Y.,q , Y

or i < )7, the problem is said to be of prediction, of filtering, or of smooth-

ing respectively.
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Criteria of Estimation

Denote an estimate . Since there is available only a set of mea-

ssurements Y(n), f N Z must be of some function of the observation

Si.e.,

If P is a linear function of Y(W), it is called a linear estimator of

Regardless of whether it is linear or nonlinedr, an estimator depends

on the criterion used for the estimation. The criteria of estimation may be

divided into two major groups: Bayesian and non-Bayesian. Bayesian

criteria stem from the Bayesian estimation philosophy which assumes that

the entire information available to an estimator is contained in the

a posteriori density function ; . On t-se other hand, the non-

Bayesian criteria are based on the likelihood function Iog ,

Merits or debits of t.ie Bayesian and non-Bayesian criteria are long standing

problems in statistics. Discussions on these are beyond the scope of this

report. The approach we shall take here is Bayesian. Consider the esti-

mation error
A

x It-VW (G.14)

Since is a random vector (some!unction of random vector Y61)), -

is also a random vector. Thus, the ideal situation that - 0 cannot be met.

Rather, we use some criteria which are average values of some scalar

functions of xi . For instance, consider a commonly used mean square

error criterion

-'(G. 15)
i.e., we weant to estimate the random vector xj by a suitable function r(Yq

of Y(") so that the mean square estimation error

-28-
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is minimum. We shall see later that the mean square error criterion is only

a speciai case of a broader criterion called an admissible function. I/ h (1)
is said to be an admissible function, if:

(i) M is a scalar function of V

(io L' (0) = 0

where P is a scalar valued, non-negative, convex

function of ^'

(iv) a()='

Note that as defined in (iii) need not be a convex function. Some examples

of L. are r, ?icted in the following figure.

Clearly, _s "s a member of /La

Some Important Theorems of Estimation

Three important theorems are given in the following. These are the

basis for our subsequent development.

Theorem 1: The conditional mean E [tj.IYn)j is the optimal esti-

mator for the criterion function Lf in (G. 15) for any

conditional density function 4'(tIY(w).
ThiG theorem is very easy to establish; one simply substitutes
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into (G. 16), yielding

From this equation, it is readily seen that A ,OE(Yji)1 minimizes the

second integral, and hence, since the integral above is non-negative, the

criterion function 4. . In the above theoren., the criterion function can

be relaxed considerably at the expense of imposing some constraints on the

conditional density functions. Shererman (Reference 42) has established the

following important theorem,

Thecrem Z: If the condicional density ;(Z*JYIY)) is symmetrical and

unimodal. then the contitional mean is the optirnal

estimate for all the admissible criteria functions b- .

The importance of theorenmis 1 and 2 is further enhanced by the fact that the

conditional mean is an efficient estimator, i.e., the conditional mean is

unbiased and minimum variance. Indeed, it is easy to establish (Reference

31):

P Theorem 3: The conditional mean is an efficient estimator (i. e.,

unbiased and minimum variance).

We see from theorems 1 - 3 that the conditional mean is a very

desirable estimator. In order to obtain the estimate, one has tr. first obtain

Sthe conditional density function. H ow ever, as w e shall see later, the avail-

ability of the conditional density function is often one thing, but the evaluation

of its mean is quite another, and this difficulty is often encountered in non-

linear problems.

It is also appropriate here to point out Ehat if the conditional density

function . is symmetric and unimodal, then its mean and mode

coincide. The conditional mode is closely related to the weighted least

square criteria as discussed in Section III.
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The importance of the Gaussian case will now be discussed. Clearly,

a normal density function is symmetrical and unimodal. Thus, if x and

Y•0) are jointly normal we see from (G. 8) and (G. 9) that -tJvYcw) is also

normal. Thus, tne conditional mean E(- V.)) is the optimal esti-

mate for all the admissible criteria functions L . Furthermore, we also
Asee from (G. 9a) that this estimate -Y is a linear function of the available

data Y(?) . Thus, for the Gaussian case, the conditional mean is a linear

estimator. Ftirther, it is optimum with respect to all the admissible criteria.

Before we proceed to use these theorems to develop our filter-

smoother algorithms, we shall first present some useful formulae pertinent

to the Gaussian conditional mean and covariance in the next section.

Some Useful Formulae for Gaussian Conditional Expectation

and Conditional Covariance

From the fundamental theorems of estimation discusscd in the pre-

ceding section, we see that the conditional expectation is of paramo,.nt

importance in our subsequent development of the estimation algorithms. We

will see later that the conditional covariance is also an important parameter

for assessing the quality of the estimate. For use in subsequent develop-

ments we present here several useful properties and formulae for Gaussian

conditional expectation and conditional covariance,

(i) The conditional expectation of x given y, E(z••) is a

Gaussian random vector which is a linear function of y.

This is readily seen from (G. 9a).

(ii) The random vector = is independent of

any linear transformation of y. Since the random vector

ii-5E4cJq) has a zero mean (this is easy to see, since

E fE(*1q)] = E() ), the above statement implies that the

random vector x, which is the estimate error of x

given y, is orthogonal to any linear transformation of y.
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This is one of the most important properties of the

minimrnt mean square estimation.

(iii) Let x, y, and q. be jointly normal with joint density

functien as given by (G. 10). Then the covariance of x,

y given • is

(/)J TJ(G. 18)

indicating that the condition on . can be removed.

Furthermore,

Equati~on (G. 18) is an immediate consequence of the pro-

S~petty (ii) and the property (v) discussed in Gaussian

S~variabl!es. (G. 19) is obtained using the property (ii),
(equation (G. 9a)

S(iv) Let x, y, and .• be jointly normal with density function

S~as given by (G. 10) ( with ,• replaced by • ). If y and
ware independent, the

This relationship can be easily obtained from (G. 9a) and
e the fact that P.- " a

(v) Using (G. 14) it can be shown in a straightforward manner

Sthat
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(G. 2 1)

where

Note that y and are not independent. By interchanging

y and I it is readily seen from (G. 18) and (G. 19) that

and -

Thus ( G. 21) can also be expressed as

(vi) From (G. 9b), (G. 21) and (G. 21a), it is straightforward

to establish the following important results of the con-

ditional covariance of x given y and

-1 r
P." P/ z pý_- (G. 22)

where

or

P - P -p op' IyP_ P= •,•/•(G. ZZa)

The formulae (G. Z1), (G. Zla), (G. 22), and (G. 22a) are of fundamental im-

portance in the recursive estimation of parameters. One may interpret x

as the parameter to be estimated; and y and 1 are respectively old and

new data. Thus (G. 21) indicates that the optimal estimates of the parameter

x given a!l the data is a linear combination of the old estimate and new data,

if x, y, I are jointly distributed normally.

The results of this Appendix are used to develop filter-smoother

algorithms in Section 5.2.
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APPENDiX H

ACTUAL BIAS AND COVARIANCE IN MULTI-CORRECTED

EXTENDED KALMA•N FILTER

Consider the dynamic syftam

a - -1) '-- O (H . la )

b*, (ýj) Vj'(H. Ib)

"" where the random vector sequences s'r and are white Gaussian with zero

[ ,mean and covariance matrices.

[. ~~E(v• ) =0o• .

- - Assume that the nonlinear functions and nj may be adequately represented

by a two-term Taylor series expansion

h('~z b~) . ~-i)~- -(H. 2b)

where -- " [(z-•,(il-'" is a vector whose i element is

~9~*L(~~('~)f~ =id ~(H. 3)

and etc.

It is known that the axtended Kalman filter (5. 32) is a biazed estimator. To

show this, let :. begin with an unbiased estimate Y't[. with covariance

matrix j -- e.,

and define

1-- 1(H. 4a)

f Jet -(H. 4b)
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^ 4 (H. 5a)

[OV re^,•-t' Q P']- (H. 5b)

and

E [-,,Y I]/* )E[k, i-I 2 h~jr : t/ _I&q~. e-*It (H. 5c)

showing that the extended Kalman filter gives biased estimates. However,

the computed covariances are identical to the actual covariances approximated

to the second order. We note in (H. 5) , "", 6, AI.,

We wish to examine the bias at the second correction. To this end,

we first consider the one state smoothing (5. 38). Define

.4~e-l = •- •A'•-I*

then from (5. 38) and the fact that (1-1 ,,

A A (.A I rA Ar

(H. 6)
and hence

(H.7)
From (H. 6) and (H. 7) we have

*-r~ *~-k. + ~ h . *ft ' .(H . 8)

2 L96
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Th us,

e• _ft _j/ . er,,- '

VA

- -, ^
f 

rm TIf
P;tfO K + 'qt j p i- 146 tt -! +~ higher order s

+ hiqher arde'r Ie~ws

It iS easy to see that to second-order approxiration

& .(H. 10)

: ~Similarly E [e •,,e/./. ••,

Hence to the second-order approximation the actual covariance matrix for the
one-stage smoothed estimate is
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•H L

10416 11 it it *)6- IF t' *.- Ol
(H. 11)

r P- r,-~ P6 -.},. ,•, fi Y, 19 P,, l,-,.,

which is identical to the computed covariance for the one-stage smoothed

estimate (5. 37).

To see the error statistics of the second corrected i-stimate, we

first consider those of the second extrapolated estimate. Define

A (2) 4 1 3z)

(2z ) FA(o (f) rT (H. 12)

to the second-order approxirm.ation. In (H. 12), - - -t (0 A AU 6 A

nd-- e 6 I Hence:

E 1 = "[ (H. 13)

to the second-order approximation.

Thus, to the second-order approximation the actual covariance of the second

prediction is

which is the same as the computed value. Now consider the second corrected

estimate

A (1) A(,t) (Z) _h (A i 1 .II 1)1,a A* )
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Define A(Z

Then to the second-order approximation

A(Z[A (t) A()re C

Hence,

1- E-T I)
M. (H. 16!

and, to the second-order approximation, the actual covariance for el*£ is

o• [j](-•-ti (I ÷ 'A "T$r (H. 17)

which is the same as computed covariance matrix for the second corrected

estimate.

Now, we are in a position to compare the bias and variance of the

first and second corrected estimates, based on equations (H. 5c), (H. 5d),

(H. 16), and (H 17). Assume that d j§ (z' and ro (H.) and_(1) (2 I 6 .

which implies that P z and a Then from (H. 17) and

(H. 5d) it is seen that the variance of the first corrected estimate (from the

extended Kalman filter) is approximately the same as that of the second

corrected estimate. However, the bias of the second corrected estimate is

substantially different from that of the first corrected estimate as evident
from (H. 5a), (H. 5c), (H. 13), and (H. 16). Indeed,

[A") 1 Afn) dPo,

Since is the covariance of the one-stage smoothed estimate which

is "smaller" than ,- f M we see that the effect of nonlinearity of

the system is reduced by the multi-correction.

Similarly, noting that the last terms in (H. 5c) and (H. 16) are

E [ e_, 09

ELe4. •/.t I - *"
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F

to the second-order approximation, we see that the effect of the nonlinearity

in the measurement system is also reduced.
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APPENDIX I

CORRELATED PROCESS AND MEASUREMENT NOISE

In the derivation of the locally iterated filter-smoother algorithm,

it was explicitly assumed that the process and measurement noise vector

sequences were uncorrelated. With the incorporation of acceleration mea-

surements into the measurement system, a direct correlation exists be-

tween the resulting measurement noise and process noise. This fact can

readily be seen by considering the nonlinear dynamic system

rN W ',~, (1. 1)

I and discrete time noise measurements of both states, x, and state deriva-

tives, ;, (accelerations) represented by

Y W= _*ý I +
from whizh estimates are to be based where i (t,.) A Zi w,-) (=)

S for t. iý- tt., a n d tf.- and a are zero mean white Gaussian sequences

with

£ (1.3)

As in Section 5. 2, we express the nonlinear system (1. 1) in discrete

form as

(1.4)

where g• (ti- in (1.4) is defined to be the solution, at time t" , to

(1. 11 with initial condition - and wY"(,):=t.C e. ei and 1. is an appro-
priate noise effectiveness matrix for this discrete representation. From

(I. 1) and (1. 2), the measurement system can be expressed as a function of %j

only or

3(1.5)
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Clearly, Vi and Vj in (1.4) and (1. 5) are correlated, with

thus verifying the previous assertion.

However, by a proper transformat,.on, the proc.-ss and measurement

noise can be made uncorrelated. From (1. 5), since

qi-1 - hi., (zY1.,)- .), = 0
(1. 3) can be equivalently written as

z( t (1.7)
or •

S= q,(.,+itq.-. ,.t)÷i (1.8)

where

(0. P.UY-. -' -' (1.9) !

It is desired to adjust D such that

"or

From (I. 10) it is clearly seen that a and q will be uncorrelated

if

(I. 11)

W e note, from (1. 9) and (I. 11), that cov(a);) . P k -fi je.-, .i P. A, "

fTherefore, with Di given by (1-I11) and noting that the measure-

ments Y can be considered as deterrrinistic (known) inputs to the system

described by (I. 9), the locally iterated filter-smoother and fixed-point

smoothe." algorithms are directly applicab] a to the modelt (1. 5) and (I. 8).

The results are summarized below.
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F

Locally Iterated Filterr-Smoother:

,,(j÷') ij) (i•) Q ji1 j ,11(j ) W Wi J

whure

,0() , j .r

S' 0 14 •/y-', /i +'lei

RESp('i -g"bj4,9i (Z *f

j Di. f 14

A

"'i-, i .i -'..,

with the initial or starting conditions
^AL?) ,A^ t

••- (is defined in Section 5. Z
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The iteration scheme starts with j = I and terminates when
'Aq AG

or after a prespecified number of iterations. The converged values of ^Wz'
A(J-0 0- 1) A

and "P, are taken as the estimates i/ind the

covariance Pi , respectively, for the next data point.

Fixed-Point Smoother:

(1-0=f1÷ ,° -', ,, (#
160/i- t~ +. RES.

where

All symbology is as previously defined and the superscript (f) implies

the final trajectory in the locally iterated filter-smoother.

A few general comment. can be made about the estimation algorithms

when correlation between the process noise and measurement noise sequences

exists and this correlation is incorporated into the algorithms.

1. The algorithms for the locally ite.:ated filter-smoother

become slightly more complicated by tht introduction of

additional terms in each of the matrix equations.

2. An added nonlinearity, bh (z,) , is introduced into the

system dynamics.

3. The estimation of the tnknown forcing function, tA-

employing the redefined system equation (1. 8), will

consist of both the original process noise sequence ( • )

and the measurement noise sequence ( z- ) as defined

in (1. 9).

4. If ei is about the same order of magnitude as Q. and g,
i..:-eased accuracy could be expected.
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However, Cj was set equal to zero in the locally iterated filter-smoother

for computational simplicity.

3

I

I
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APPENDIX J

EFFECTS OF CALIBRATION ERRORS AND SENSOR/FILTER DYNAMICS

In the development of the identification techniques, consistent errors

in flight test data have not been considered. Three major types of consistent

errors exist: sensor offsets, errors in calibration constants, and sensor/

filter lags intcoduced by the recording system. Di Franco (Reference 10)

has shown that for the equations-of-motion estimator, consistent calibration

slope errors bias the extracted parameters but consistent instrument offsets

can be removed by the addition of constant bias terms in the model equations.

Similar degradation in parameter identification results for the iterative tech-

niques used in the second and third stage refining process. Since at the time

of this analysis, the extended Kalman filter was emerging as the best tech-

nique for use in the second stage and is an obvious requirement for the third

stage, it was considered appropriate to conduct an error or sensitivity analysis

around this technique. The primary goal of this analysis was •o evaluate the

effects of sensor and fiLter dynamics on the quality of the parameters identified

employing the extended Kalman filter.

Two approaches were initially taken: (1) numerical experiments

were conducted in which data were generated from a realistic model formu-

lated using noise levels from the X-2ZA MPE II flight test data and the sensor/

fil.er characteristics of the X-•ZA. Data sets were generated with and without

sensor/filter dynamics. Both sets of -1ata were then applied to the extended

Kalman identification technique without modification and the resulting param-

eters estimated were compared; (2) a sensitivity analysis was initiated to

determine the effects of erroneous models on the covariance of the estima-

tion error from the Kalman filter. If mno6eling errors (e.g., Unmodeled

sensor lags and biases errors) and imperfect knowledge of the plaxt .,. _1 mea-

surement noise covariances exist, the calculated error covariance matriA

in the filtering algorithm no longer repre:'ents the actual error covariance

matrix. Since the actual covariance rnairt: of the estimation error ives

an indication of the error which can occur- v, Pe.- an incorrect model is used,

this covariance matrix will indicate filter performance degradation due to

inaccuracy in m-)deling,

306



A brief summary of the results and conclusions from the numerical
experiments are discussed below. A derivation of the recursive matrix equa-

tions for an error or sensiZivity analysis of the Kalman filtering algorithm is

given in Appendix K.

Numerical Results

To determine the effects of neglected sensor/filter lags in the X-22A

instrumentation on the Kalman filter identification technique, three sets of

data were generated on the computer employing the linear equations of motion

of the X-22A at fixed-duct incidence. Data generation is hown pictorially

[ in Table J-1 for each case, and noise characteristics, sensor/filter dynamics

used, trim conditions and control input are given in Table J-2.

An investigation of the X-22A instrumentation revealed that the

models included three of four sources of possible er:or. These are:

1. Sensor/filter dynamics

2. Individual channel filter dynamics

3. Colored measurer.ment no-'se

4. Consistent bias and calibration slope errors

Values of each error source are given in Table J-2. These values were esti-

mated using M.E 11 flight test data and the instrumentation characteristics

on the X-22A. Calibration and bias errors are coný;idered 'maximum worst

case" and are commensurate with the existing instrumentation accuracy.

Freque- -•r response charactei-•stics of the sensor/filter combina-

tions in all measurement channels, except A and W-, were considered to be

flat to frequencies high enough to have negligible effect and thus were not

included. Since j is obtained by differentiating 9 in the X-22A, a differen-

tiator was simulated by the transfer function

- This source of error was not considered
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5(5)zV. 1)

To include the effects of colored measurement noise, the measurement noise

statistics were assumed to be an isotropic zero mean random process with

experimental autocorrelation function

V (• (/t e -} a P 8•'• (J. 2)

where a. is the variance and 9 is the bandwidth. Since at the present time

the statistical properties of these errors (e. g., power spectral density) are

not well defined, it is reasonable to adopt the model specified by (J. 2).

for each measurement source was chosen to be con3istent with the bandwidth

of its particular sensor and filter.

Data 3A also included the individual channel filters. Note that

process noise was assumed absent.

Results employing the linear version of the extended Kalman filter

without acceleration measurements and the systematic recycling technique

discussed in Section V are given in Tables J-3 through J-6. Tables J-4 and

J-5 depict sensitivity of the parameter estimates for different selections of

S. In all cases, the 1 m atrix was form ed from the equations-of-m otion

variances multiplied equally by a constant factor. From these results, the

following general conclusions can be made.

0 The parameter estimates from the equations-of-motion

initial estimator are "very poor" when sensor dynamics

are present. This degradation is contributed to by the

way a, is measured in the X-ZZA, i.e., differentiating q
and simulated here. However, the systematic recycling

of data through the extended Kalman filter improves

the estimates considerably.
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Senscr dynamics and correlated measurement noise (as

defined here) have "very little" or no effect on the quality

of the parameters estimated using the systerratic approach.

Small degradation is due to a poor initial estimate

because of the i measurement.

* Additional filtering of the responses, assuming all

filters are the same, improves identification by reducing

noise levels. The added dynamics of the filters, if the

filter cutoff frequency is 6 Hz or better, does not affect

the Kalman technique.
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TABLE J-I

Data Generation

CASE 2A (NO ERROR MODEL)

W I 
DISCRETE

IMEASUREMENTS
RIGID SODY -

at~t)EQUATION

C00oTROL A. + l+
INPUT

ad(t)- MEASUREMENT

NOISE

CASE IA IERROR MODEL. SENSOR OUTUTS)

• ,••---p.. (1

CASE 3A (ERROR MODE.. FILTER OUTPUTS)

R IGIC,3OO)• 1. 7S.SW + a•F 1 '"
EFUATVON DYLTERS +

NOISE
SHAPING
FILTERS

v+(tJ
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TABLE J-2

Measurement Noise Characteristics and Sensor and Filter Dynamics

MEASUREMENT NOISE SENSOR & FILTER DYNAMICS 1(3) CALIBRATION ERRORS

SENSOR STANDARD (1) BANDWIDTH SENSOR FILTER FUNCTIONAL BIAS
DEVIATION SHAPING FILTER SLOPE (30) (3o)

u 2.6 fps 3Hz rn = 3.2 Hz wn = 6 Hz .02 1.3 fps
6 = .707 = .707
I st ORDER

(2) w .36 fps 3 Hz 3 ORDER .02 .75 fps
3 Hz

a .09 10 Hz NONE .01 .12

q .72 ;- ec 30 Hz NONE , .015 .25 isec

nx .112 g .0 Hz NONE .005 .005 g

nz .05 g I0 Hz NONE " .005 .01 g

(2) q 2.3 /sec N.A. (4) ,, .015 .V7/sec 2

SOS NONE N.A. NONE 0 0

(1) ESTIMATED
(2) NO SENEOR ON X-22A
(3) MAX WORfT CASE. SET TO ZERO IN DATA GENERATION
(it) DIFFEREN-,IATE q AS INSTRUMENTED IN X-22A

-TRIM CONDITIONS-

Iko = 30° so = 2.35

go = 0 so = 17.257-

wo = 5.36 fps 6 eso = -. 637"

U0 = 130 fps

-CONTROL INPUT -

.2"-
10 17 20
SI I t SE,

53.I
be$ (N.)F

-.63-

.*93
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TABLE J-3

Summary of Initial Estimator - Equations of Motion

NO ERROR MODEL ERROR MODEL - SENSOR ERROR MODEL - FILTERED

2A_________ IA 3A
PARAMk.TER TRUE2A _ _ _3A

VALUE NO PROCESS NO PROCESS NO PROCESS
NOISE NOISE NOISE

•fu. -.00114 -. 003146 -. 00206 -. 00209

Afkr -. 0075 -. 00559 -. 00286 -. 00599

•f -. 625 -. 5003 -. 0821 .20146
M~s t1 ,8 .3654 .2131 .1502

XU -. 15 -. 137 -. 1347 -. 1372

xu/ .021 .0503 .0555 .0459

X 'F,, 1.37 I .4635 .2675 .3536

-. 216 -. 198 -. 1930 -. 2052

-. 65 -. 6131 -. 5308 -,5587

,_,S 1.66 .41808 -. 417902 .11660
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TABLE J-6

Summary of Extended Kalman - 5 Passes

PARAETER TRUE I_ __ E0  ,ooP,
VALUE I 2A IA 3A

F, -. 0044 -.ooz -.00607 -.00492

A,' 0, 0.o075 -.00753 -. 00795 -.00757I

Af -. 625 -. 7748 -. 997 -. 8936

4~ .8 .5044i .5746 .5620

)(a .: -. 0877 -. 0755 -. 14 99

Xw~ .021 t )46 .18 7u. .0294

X~e, 1.37 -3.887 -4,. 809 1.78'7

Sl• -. 216 -. 2049 -. 1894 -. 1021

Z wa, -. 65 -. 6310 -,.59q44 -. 5756

O 1.66 .0593 -1.371 -. 3138
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APPENDIX K

SENSITIVITY FUNCTIONS FOR THE KALMAN FILTER

The recurrence relations in the Kalman filter algorithm yield the

correct error covariance or performance of the filter if the a priori stb-

tistics ( P () , R and Q ) and choice of the mathematical model truly rep-

resent the actual process. If this is not the case, the calculated error

covariance no longer represents the actual error covariance of the filter.

Since this latter covariance matrix gives an indication of filter performance

(on the average) due to unknown a priori statistics and modeling errors, it

is of prime importance in determrining filter degradation or performance

sensitivity with respect to variations in the assumed model.

Matrix difference eqaations are briefly derived in this appendix for

the actual error covariance of the linear discrete filter. Since these equa-

tions appear elsewhere in the literature (References 31, 73, and 74), a

detailed derivative is not given. However, for the interested reader, a corn-

plete development is given by Griffin in Reference 74. If the estimation

errors are small, the equations are directly applicable for a sensitivity

analysis of the extended Kalman filter.

Derivation of Actual Covariance Matrices

Assume the actual or exact process and measurement vector is

described by the vector difference equation

ga~ a.(*-) q () aa(k) "ra(•) (dynamics)

1-~ ,~~ A* (measurements)
with the moments

Efara(i ]I = C(K. z)

16 =
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where the superscript a" refers to the actual process. The assumed
model, used to derive the filter equation, is postulated to have the same
form as linearized equations (5.13) and (5. 14),and is given by

with the moments

irE ( = 0 E ar (6•, r Q
(K. 4)

In the sequel, all unsuperscripted variables will refer to the assumed model
or calculated covariances.

Using the assumed model and statistics as defined in equation (K. 3)
and (K. 4), the estimator gain k(*) znd calculated error covariance are

given by equation (K. 5).

k/it) (,),4-r [Ay(j)()Tt)2~j

M(Af)
P(~ kk~/I~]M~)[-k~)i(~) T~))~rk 7 (K. 5)

P(O) = initial error covarian-:

The estimation equation then becomes

where X).> ~(t -) 5f(16-.~

Subtracting the estimation vector frorrL the state vector of the actual process
gives the actual estimation errors. Therefore,
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A (K. 7)*

where y and t .xre the actual estima'ior. errore giver. data up to A- and

t -I , respectively. The actual covariance of the estin-tion er". rs z re de-

fined as usual in equation (K. 8)

E4  6-4 ((W

Using equations (K. 1), (K. 6) and (K.7), rmatrix difference equations

for M1(i) and Pa(f)can easily be shown to be given by

M 4 •(*- ,) P40- -F) r(,,- ,) + a• if0 ) eA-,,) ý'r * -,,, f (-,)
f ., (i_ -1,06 7 (4- _ OA,76 ) -, A _"(A-,1) ,L(I-)§

(K. 8a)

[:- Az-/*) 9NV] MeLW9,4(* (,)k et). R1&64) . W()

* This equation is also valid when the actual process and assumed

model have different order. For the usual case where thc order of
the actual process is greater than tie order of the assumed model,
equations (K. 3) and (K. 6) should be interpreted as though fictitious
zero states were augmented to the assumed model equations. This
implies A(C) will have the partitioned form

** It is not strictly correct to refer to Pa(t) as a covariance matrix

because error in the assumed model dynamics could make Eto)
However, Pa(2) does provide a direct nmeaaure of the actual
estimation error.
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where

p •) - - )(K. 8b)

with the initial condition

= j-o%-5 Y4() (K. 8c)

and k (t. is gez:erated from (K. 5).

Similarly, difference equations for the cross-covariance ant, auto-

correlation imatrices defined in (K. 8b) can be shown to be given by the follow-

ing.

+ f'
i%(L ( i).-K )4i]T1

rZTp & r(f Kr~)

The particular differences between the actual process and assumed

model usually indicate the initial conditions used in (K. 9). In general, if

i Ef{"(°) = 0 the initial conditions are easily shown to be given by

•:~~1 (o •¢)=P() (K. 10)

For the case where the assumed model and actual process are of the same

order, (K. 10) holds for the less severe condition that •(o)= Yf-[C(o0).

The optirmal filter performance, P 6k) , achievable when the

assumed model correctly characterizes the actual process, is obviously

given by (K. 5), whea the actual process parameters are used.
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-Mean of Estimation Error

It was indicated in the footnote to equation (K. 8) that if modeling
errors exist (Aý(*):0 and Ad/(•,i@ ':6 , the .mean of the actual estimation

error may not be zero. If E00"] 4 0, the covariance of the estimation
erroi is not P4(i) but is more correctly given by

Taking the expectation of (0-) the means of the extrapolated and a

p,3steriori estimation errors are given by

Substituting (K. 12a) into (K. 12b) and using q')j '-ft'-J
the mean of the a posteriori estimation error results. That is,

4 (K (q3)f~
where e() =14(1)

The first term in (K. 13) represents the mean of the estimation error

due to non-zero mean initial estir.i-ation error, i.e., E fq(O)J 0

if,P

*rf (K. 14)

then the estimator is asymptotically unbiased if no modeling errors exist.

If modeling error exists, the second term in (K. 13) E force the estimation

error to be non-zero mean or the estimator to be biased; in which case

(K. 11) gives the correct covariance of the estimation error and (K. 13) the

meaii. From the second term in (K. 13', it is seen that the bias is a function

of modeling errors and F.Ij((0)J. Similar results hold for the extrapolated

estimation error and its covariance.
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Error Bounds

4 •Condi:ions have been reported by Nishimura (References 75 and 76)
such that a set of error bounds can be computed for the variances of the esti-

mniion error for the Kalman filtering algorithms and are correct for the
iinear continuous or ditecrete case. The main results are given in the foilow-

ing theorem and comeoliary.

Theorem 1

If P(O) :ý P"1(0)1 Q(t) A 4Q and k(i)?a 124",) for all AO then

P(I) e-P160
for all £ - 0 . Equivalently,

where the elements [P•i£)],. and [P464)]ji are the respective diagonal com-

ponents of P(*.) and PO(t) . The greater than or equal to sign used with

matrices, e. g., P(o) at Pa(o) , indicates that the differmnce matrix P(o)- P4(o)

is positive semi-definite. Hence, upper bounds on the variances of the error

L in the estimate are available even when the variances of the actual process
are not known provided the conservative conditions in Theorem 1 are satisfied.

Corollary 1

if F '(0) a P(O), Q'(f) at Q(k), andk?'(" 2 (k) for all i:!t,

then pa() • P(k)

or LVW -k a PeiJ. t 0

Obviously, the optimal estimation error, P0 (i) when correct

a priori information is employed is always less than or equal to P2(*-) by

definition, i.e., Po(e) z P0 (.) V 0

Therefore, if the conditions in Theorem 1 hold
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ano -.(I) cart be considered an upper bound on the estinuttion error.

However, if instead the conditions in Corollary I are valid,this

implies P*2 Ff) V~
pa( ") e PO( ) (K. 16)

and no relationship can be given between Pet) and P(-).

The above theorems esiablish upper bour.ds on the estimation error

to be expected when incorrect a prior-I information is used in the filtering

algorithm. The lower erre. bound is given by P0 (l.)for the linear Kalman

filter and the Cramer-Rao lower bound for arbitrary estimator. For the

extended Kalman filter, the validity of these reLationships is conditioned

upon the accuracy of the approximation made in tne linearization.
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APPENDIX L

DERIVA lION OF THE EQUATIONS OF MOTION

FOR PDMT QUAD DUCT TEST MODEL

"The geomeotric coifiguration and the coordinate s -.- s have been

depicted as .h-awiz in the schematic diagram of k igur:- 7- 1. Nith reference

to the coordinate systerrn , Y: , . ,the vector I can be written as

41 Sn = • (L.+ )

With respect to this same coordinate system the linear acceleration

at the model c.g. is

or

S0 o +)0 0 0 +1 0 0 0 (

0=1 0 I

SL_ "~- -.-ejsiO 9 o
r ~(L. ?.)

The total inertia force F-S acting at the moeel c. g. is then

S ( MV1M)
aFn M n 0 (L. 3)

Expressing i' and f•s in the above equation in terms of the , th

space-fixed variables at the c.g. (Figure 7-1), equation (L. 3) be-comes:
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'm I e'•o I I
F-U

=.1 0 I
0 (L. 4)

With respect to tht. body axis .-,ystem X 3 , .• ' l the above inertia

force and the gra,,itationai force can he written as

AI r

(L. 
5)

L9 ( MV M) s

nos e 0 esio in

where -r 0 0 0

,3 Z

Equating
(Y'nort,'a)s + (ZO)s + Mae'.).=

(L. 7)

and ex.:)ressing the iner-tia acceleration rP-,,r" in (L. 4) in terms of

body system variables, i.e..
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the following equ~ations of motion, expr-,sscd in body axis system are

obtained:

(M.M)(M M~ { M17 t~~02) [13 eos 61 1 si 6-(M Mv) 9 siO4 0 ]+

- ~ e ~ o 0 (Al MV os6

where

15 - A2 (M ) [(Xcg -)a 6 /O]

.14 =(Mi)[-q~r~S/i71-fajcoS(9 Mv[f(XY,,9r)ca.59GZC SM 1

Using the following shorthand notations:

M+MI

M~m#Mv 8Ov M+M~

MAIv+M f ~

AM+ Mv*Mh ,Af
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the above equations of motion can finally be written as

-~ S1 O., q i z~*u( [(I . 4o2  
- ýz]~x3-i 1-)inosp

I:[~z *cre'O X F "6sp o ' (L 9a
-w . ~ q -,,• <"- )• [,5;r, - ( ) - j, , [i•, = e .9

F/ \ r L]

e a c(3, oo (L. 9a)

+ [0oe.9 u •,Of ] s;122 [ or) S,'- Cos 1o9 Xa =, 0 (L. 9b.

We now turn to the derivation of the pitching moment equation. The pitching

moment equation about the model c.g. is

Miner,.d + ty * = 0 (L. 10)

The iner'.;a moment is

,r;t [Tel. (XV +Alh) '.5 Zý -tMy Yý a]

Using equations (L. 1), (L. 2). and (L. 3), the above equation can be rewritten

as

-,: [ x -. <.I +•••. [- (us < 31cws.•- .(,,, •,7M,,e,-+,,(vo,-Mj <• cg ir 8 , Z+q7,.-,. +=•<, eas 0][9 qa q ,..,,(Mr~[Xq) se We-5' z' -usi 0x,-r V 0,0 ie
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The gravitational snoment is simply

M',= MV qx X l 4-,Vq~Xr~~gIB (L. 0

Combining equations (L. 10), (L. 11). and (L. IZ), the pitching moment

equation about the model c. g. is obtained:

14h f *)S~n v oe W ] [(i~3 a qe)eoseq

16. )1

#M,,1y C-)(.wos.-9,)-Z(j q+w -..sr ne)J÷ -,s = o (L. 13)

Linearization of the Euations

For fixed-duct tests at the PDMT, assume that small perturbations

about a constant trim may be valid. Then the linearized version of the above

equations about U,, ar, 9•G can be written as

/ - ) 0 F

0(.. 04)
0

X~ ~~ K~ -Cse (-ar~eX r+
4 4B

0 0 0 0 0 5

(L. 14)
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where the variables are perturbation values, aad:

1 9- 1 9x
McM a( ) Do

-' Ic do 9)

x- 4 ,(e,)x ,

z~z

Zr = 2IfZ (911,zo - 5l, () X,

•,(t) = in , cos'

OO) = (le si, eo C'& 5

22

+•xo - ]-,,),(Mh-o2,;n ,_')),•M

- 2 Mh ( Xq -r) sin 0,,o os

=/ OM

tf Ml,, __ M•
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•_ A prim-ary advantage in the linearization cf the general nonlinear

;:• equations, (L. 9) and (L. 13), is the fact that the inertial coupling through the

square of pitch rate is eliminated, and the equations may thus be written in

terms of conventional state and control variables. A straightforward --natrix

S~~inversion enables us to write the equations in the general form x = kF .

} that is:

I((, 15)

eqaton, L.9)an (. ,3,.i th fac tha th(ietilcpn hruhh

3Z9Z

-t.

A2, A2 A, A 4  :14 R4iz~z F
A A,~~~2 'A43 , sBzB

where (~)LA 3  A r B 1  LA 1)

kr/

+L x

fZ-F2XIa 
r-M



A2Z

A32 0

£J7

A 13

[is4 J' (i-4 -

JLi
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